論文の概要: Efficient Edge AI: Deploying Convolutional Neural Networks on FPGA with the Gemmini Accelerator
- arxiv url: http://arxiv.org/abs/2408.07404v1
- Date: Wed, 14 Aug 2024 09:24:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-15 13:54:15.305177
- Title: Efficient Edge AI: Deploying Convolutional Neural Networks on FPGA with the Gemmini Accelerator
- Title(参考訳): 効率的なエッジAI:Gemmini Acceleratorを使ってFPGAに畳み込みニューラルネットワークをデプロイする
- Authors: Federico Nicolas Peccia, Svetlana Pavlitska, Tobias Fleck, Oliver Bringmann,
- Abstract要約: 我々は、Gemminiアクセラレーターを用いて、FPGA(Field Programmable Gate Arrays)上にCNNを配置するためのエンドツーエンドワークフローを提示する。
Xilinx ZCU102 FPGA 上で YOLOv7 モデルを36.5 GOP/s/W のエネルギー効率で実装することにより,リアルタイムな性能を実現することができた。
- 参考スコア(独自算出の注目度): 0.5714074111744111
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The growing concerns regarding energy consumption and privacy have prompted the development of AI solutions deployable on the edge, circumventing the substantial CO2 emissions associated with cloud servers and mitigating risks related to sharing sensitive data. But deploying Convolutional Neural Networks (CNNs) on non-off-the-shelf edge devices remains a complex and labor-intensive task. In this paper, we present and end-to-end workflow for deployment of CNNs on Field Programmable Gate Arrays (FPGAs) using the Gemmini accelerator, which we modified for efficient implementation on FPGAs. We describe how we leverage the use of open source software on each optimization step of the deployment process, the customizations we added to them and its impact on the final system's performance. We were able to achieve real-time performance by deploying a YOLOv7 model on a Xilinx ZCU102 FPGA with an energy efficiency of 36.5 GOP/s/W. Our FPGA-based solution demonstrates superior power efficiency compared with other embedded hardware devices, and even outperforms other FPGA reference implementations. Finally, we present how this kind of solution can be integrated into a wider system, by testing our proposed platform in a traffic monitoring scenario.
- Abstract(参考訳): エネルギー消費とプライバシに関する懸念が高まっているため、エッジにデプロイ可能なAIソリューションの開発が進められ、クラウドサーバに関連するCO2排出量を回避し、機密データの共有に関わるリスクを軽減している。
しかし、非既製のエッジデバイスに畳み込みニューラルネットワーク(CNN)をデプロイするのは、複雑で労働集約的な作業である。
本稿では、Gemminiアクセラレータを用いて、CNNをFPGA上に配置するためのエンドツーエンドワークフローを提示し、FPGA上での効率的な実装のために修正した。
デプロイメントプロセスの各最適化ステップにおいて、オープンソースソフトウェアの使用をどのように活用するか、それらに追加したカスタマイズと、最終的なシステムのパフォーマンスへの影響を説明します。
Xilinx ZCU102 FPGA 上で YOLOv7 モデルを36.5 GOP/s/W のエネルギー効率で実装することにより,リアルタイムな性能を実現することができた。
我々のFPGAベースのソリューションは、他の組み込みハードウェアデバイスよりも優れた電力効率を示し、FPGAのリファレンス実装よりも優れています。
最後に,提案するプラットフォームをトラフィック監視シナリオでテストすることにより,このようなソリューションをより広範なシステムに統合する方法について述べる。
関連論文リスト
- FusionLLM: A Decentralized LLM Training System on Geo-distributed GPUs with Adaptive Compression [55.992528247880685]
分散トレーニングは、システム設計と効率に関する重要な課題に直面します。
大規模深層ニューラルネットワーク(DNN)のトレーニング用に設計・実装された分散トレーニングシステムFusionLLMを提案する。
本システムと手法は,収束性を確保しつつ,ベースライン法と比較して1.45~9.39倍の高速化を実現可能であることを示す。
論文 参考訳(メタデータ) (2024-10-16T16:13:19Z) - Enhancing Dropout-based Bayesian Neural Networks with Multi-Exit on FPGA [20.629635991749808]
本稿では,フィールドプログラマブルゲートアレイ(FPGA)ベースのアクセラレータを効率よく生成するアルゴリズムとハードウェアの共同設計フレームワークを提案する。
アルゴリズムレベルでは、計算とメモリのオーバーヘッドを低減した、新しいマルチエグジット・ドロップアウトベースのベイズNNを提案する。
ハードウェアレベルでは,提案する効率的なベイズNNのためのFPGAベースのアクセラレータを生成するための変換フレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-20T17:08:42Z) - SATAY: A Streaming Architecture Toolflow for Accelerating YOLO Models on
FPGA Devices [48.47320494918925]
この作業は、超低レイテンシアプリケーションのために、最先端のオブジェクト検出モデルをFPGAデバイスにデプロイする際の課題に対処する。
YOLOアクセラレータにはストリーミングアーキテクチャ設計を採用しており、チップ上で完全なモデルを深くパイプライン化して実装しています。
データフロー方式でYOLOモデルの動作をサポートする新しいハードウェアコンポーネントを導入し、オンチップメモリリソースの制限に対処するために、オフチップメモリバッファリングを導入する。
論文 参考訳(メタデータ) (2023-09-04T13:15:01Z) - When Monte-Carlo Dropout Meets Multi-Exit: Optimizing Bayesian Neural
Networks on FPGA [11.648544516949533]
本稿では,モンテカルロ・ドロップアウト(MCD)をベースとした新しいベイズNNを提案する。
我々の自動生成アクセラレーターは、CPU、GPU、その他の最先端ハードウェア実装よりも高いエネルギー効率を達成することを実証した。
論文 参考訳(メタデータ) (2023-08-13T21:42:31Z) - Reconfigurable Distributed FPGA Cluster Design for Deep Learning
Accelerators [59.11160990637615]
エッジコンピューティングアプリケーション用に設計された低消費電力組み込みFPGAに基づく分散システムを提案する。
提案システムは,様々なニューラルネットワーク(NN)モデルを同時に実行し,パイプライン構造にグラフを配置し,NNグラフの最も計算集約的な層により大きなリソースを手動で割り当てる。
論文 参考訳(メタデータ) (2023-05-24T16:08:55Z) - Unsupervised ANN-Based Equalizer and Its Trainable FPGA Implementation [5.487336551142519]
本稿では、新しいANNベースの教師なし等化器とそのトレーニング可能なフィールドプログラマブルゲートアレイ(FPGA)の実装について述べる。
実用的な通信システムに向けた第一歩として,提案アルゴリズムのFPGAによる効率的な実装を設計し,Gbit/sのスループットを実現する。
論文 参考訳(メタデータ) (2023-04-14T08:17:05Z) - End-to-end codesign of Hessian-aware quantized neural networks for FPGAs
and ASICs [49.358119307844035]
我々は、共設計ニューラルネットワーク(NN)のトレーニングと実装のためのエンドツーエンドワークフローを開発する。
これにより、ハードウェアにおける効率的なNN実装が、非専門家に、単一のオープンソースワークフローでアクセスできるようになる。
大型ハドロン衝突型加速器(LHC)の40MHz衝突速度で動作しなければならないトリガー決定を含む粒子物理学アプリケーションにおけるワークフローを実演する。
シミュレーションLHC陽子-陽子衝突における高速粒子ジェット用混合精度NNを実装した。
論文 参考訳(メタデータ) (2023-04-13T18:00:01Z) - Energy-efficient Task Adaptation for NLP Edge Inference Leveraging
Heterogeneous Memory Architectures [68.91874045918112]
Adapter-ALBERTは、様々なタスクにわたる最大データ再利用のための効率的なモデル最適化である。
検証されたNLPエッジアクセラレータ上でシミュレーションを行うことにより、モデルを不均一なオンチップメモリアーキテクチャにマッピングする利点を実証する。
論文 参考訳(メタデータ) (2023-03-25T14:40:59Z) - FPGA-based AI Smart NICs for Scalable Distributed AI Training Systems [62.20308752994373]
我々は、フィールドプログラマブルゲートアレイ(FPGA)を用いた分散AI訓練システムのための新しいスマートネットワークインタフェースカード(NIC)を提案する。
提案するFPGAベースのAIスマートNICは,従来のNICを用いたベースラインシステムと比較して,6ノードで1.6倍,32ノードで2.5倍の性能向上が期待できる。
論文 参考訳(メタデータ) (2022-04-22T21:57:00Z) - SECDA: Efficient Hardware/Software Co-Design of FPGA-based DNN
Accelerators for Edge Inference [0.0]
本稿では,FPGAを用いたエッジデバイス上でのDeep Neural Networks (DNN) 推論アクセラレータの設計時間を短縮するハードウェア/ソフトウェア共同設計手法であるSECDAを提案する。
SECDAを用いて、エッジFPGAを含むプラットフォームであるPYNQ-Z1基板上で、2つの異なるDNNアクセラレータ設計を効率的に開発する。
我々は,4つの一般的なDNNモデルを用いた2つの加速器設計を評価し,CPUのみの推論よりもエネルギー消費を2.9$times$で3.5$times$までのモデルで平均性能を向上した。
論文 参考訳(メタデータ) (2021-10-01T15:20:29Z) - HALF: Holistic Auto Machine Learning for FPGAs [1.9146960682777232]
ディープニューラルネットワーク(DNN)は、画像や自然言語処理などの組み込みシステムに関連する領域において、複雑な問題を解決することができる。
特定のFPGAプラットフォームにDNNを効率よく実装するためには、例えばエネルギー効率など、膨大な設計パラメータを考慮する必要がある。
FPGA上でのDNN実装の質は, 自動的, 全体的設計手法により大幅に向上する。
論文 参考訳(メタデータ) (2021-06-28T14:45:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。