論文の概要: Costal Cartilage Segmentation with Topology Guided Deformable Mamba: Method and Benchmark
- arxiv url: http://arxiv.org/abs/2408.07444v1
- Date: Wed, 14 Aug 2024 10:31:19 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-15 13:44:31.211625
- Title: Costal Cartilage Segmentation with Topology Guided Deformable Mamba: Method and Benchmark
- Title(参考訳): トポロジーガイドによる変形性マンバを用いた軟骨切開法とベンチマーク
- Authors: Senmao Wang, Haifan Gong, Runmeng Cui, Boyao Wan, Yicheng Liu, Zhonglin Hu, Haiqing Yang, Jingyang Zhou, Bo Pan, Lin Lin, Haiyue Jiang,
- Abstract要約: 本稿では,TGDM (Topology-Guided deformable Mamba) と呼ばれる新しい深層学習手法を提案する。
本手法は, トポロジカルな事前情報を統合し, セグメンテーションプロセスの適応性と精度を向上させる変形可能なモデルを利用する。
- 参考スコア(独自算出の注目度): 5.901977890926558
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Costal cartilage segmentation is crucial to various medical applications, necessitating precise and reliable techniques due to its complex anatomy and the importance of accurate diagnosis and surgical planning. We propose a novel deep learning-based approach called topology-guided deformable Mamba (TGDM) for costal cartilage segmentation. The TGDM is tailored to capture the intricate long-range costal cartilage relationships. Our method leverages a deformable model that integrates topological priors to enhance the adaptability and accuracy of the segmentation process. Furthermore, we developed a comprehensive benchmark that contains 165 cases for costal cartilage segmentation. This benchmark sets a new standard for evaluating costal cartilage segmentation techniques and provides a valuable resource for future research. Extensive experiments conducted on both in-domain benchmarks and out-of domain test sets demonstrate the superiority of our approach over existing methods, showing significant improvements in segmentation precision and robustness.
- Abstract(参考訳): コスト軟骨の分節化は様々な医学的応用に不可欠であり、複雑な解剖学と正確な診断と手術計画の重要性により、正確で信頼性の高い技術を必要とする。
本稿では,TGDM (Topology-Guided deformable Mamba) と呼ばれる新しい深層学習手法を提案する。
TGDMは、複雑な長距離の軟骨関係を捉えるために調整されている。
本手法は, トポロジカルな事前情報を統合し, セグメンテーションプロセスの適応性と精度を向上させる変形可能なモデルを利用する。
さらに,コスト軟骨セグメンテーションの165例を含む包括的ベンチマークを開発した。
本ベンチマークは,コスト軟骨分割技術を評価するための新しい基準を設定し,今後の研究に有用な資源を提供する。
ドメイン内ベンチマークとドメイン外テストセットの両方で実施された大規模な実験は、既存の手法よりもアプローチの優位性を示し、セグメンテーション精度とロバスト性を大幅に改善した。
関連論文リスト
- Optimized Vessel Segmentation: A Structure-Agnostic Approach with Small Vessel Enhancement and Morphological Correction [7.882674026364302]
マルチモーダル血管セグメンテーションのための小型血管拡張と形態的補正を取り入れた構造診断手法を提案する。
本手法は,より優れたセグメンテーション精度,一般化,34.6%の接続性向上を実現し,臨床応用の可能性を強調した。
論文 参考訳(メタデータ) (2024-11-22T08:38:30Z) - Towards a Benchmark for Colorectal Cancer Segmentation in Endorectal Ultrasound Videos: Dataset and Model Development [59.74920439478643]
本稿では,多様なERUSシナリオをカバーする最初のベンチマークデータセットを収集し,注釈付けする。
ERUS-10Kデータセットは77の動画と10,000の高解像度アノテートフレームで構成されています。
本稿では,ASTR (Adaptive Sparse-context TRansformer) という大腸癌セグメンテーションのベンチマークモデルを提案する。
論文 参考訳(メタデータ) (2024-08-19T15:04:42Z) - Anatomy-guided Pathology Segmentation [56.883822515800205]
本研究では, 解剖学的特徴と病理学的情報を組み合わせた汎用的セグメンテーションモデルを構築し, 病理学的特徴のセグメンテーション精度を高めることを目的とする。
我々の解剖学・病理学交流(APEx)訓練では,ヒト解剖学の問合せ表現に結合特徴空間をデコードする問合せベースのセグメンテーション変換器を用いている。
これにより、FDG-PET-CTとChest X-Rayの病理分類タスクにおいて、強力なベースライン法に比べて最大3.3%のマージンで、ボード全体で最高の結果を報告できる。
論文 参考訳(メタデータ) (2024-07-08T11:44:15Z) - Continual atlas-based segmentation of prostate MRI [2.17257168063257]
自然な画像分類のために設計された連続学習(CL)法は、しばしば基本的な品質基準に達しない。
我々は,プロトタイプを用いて高品質なセグメンテーションマスクを生成するアトラスベースのセグメンテーション手法であるAtlas Replayを提案する。
我々の結果は、Atlas Replayは堅牢であり、知識を維持しながら、まだ見つからない領域に対してうまく一般化していることを示している。
論文 参考訳(メタデータ) (2023-11-01T14:29:46Z) - CARE: A Large Scale CT Image Dataset and Clinical Applicable Benchmark
Model for Rectal Cancer Segmentation [8.728236864462302]
CT画像の直腸癌セグメンテーションは、タイムリーな臨床診断、放射線治療、経過観察において重要な役割を担っている。
これらの障害は直腸の複雑な解剖学的構造と直腸癌の鑑別診断の困難から生じる。
これらの課題に対処するため,本研究では,正常直腸と癌直腸の両方にピクセルレベルのアノテーションを付加した,新しい大規模直腸癌CT画像データセットCAREを導入する。
また,U-SAMと命名された新しい癌病変セグメンテーションベンチマークモデルを提案する。
このモデルは、迅速な情報を取り入れることで、腹部器官の複雑な解剖学的構造によって引き起こされる課題に対処するように設計されている。
論文 参考訳(メタデータ) (2023-08-16T10:51:27Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
本稿では,信頼性の高いマルチスケールウェーブレットエンハンストランスネットワークを提案する。
本研究では,ウェーブレット型特徴抽出器ネットワークとマルチスケール変圧器モジュールを統合したセグメンテーションバックボーンを開発した。
提案手法は,他の最先端セグメンテーション手法と比較して信頼性の高いセグメンテーション精度を実現する。
論文 参考訳(メタデータ) (2022-12-01T07:32:56Z) - Position-prior Clustering-based Self-attention Module for Knee Cartilage
Segmentation [14.797196965853233]
膝軟骨の形態変化は変形性膝関節症の進行と密接に関連している。
変形性膝関節症に対する経時的研究に有効な自動軟骨分割モデルを提案する必要がある。
論文 参考訳(メタデータ) (2022-06-21T12:12:16Z) - A direct geometry processing cartilage generation method using segmented
bone models from datasets with poor cartilage visibility [7.107236806113722]
変形性股関節症に対する人工股関節の術式について検討した。
我々のアプローチは画像のモダリティに非依存であり、整合性インターフェースを作成し、有限要素解析に適している。
論文 参考訳(メタデータ) (2022-03-20T22:47:06Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
本稿では, セグメンテーションによる異常胸部X線(CXR)識別性能を向上させるための深層学習手法を提案する。
提案手法は,CXR画像中の肺領域を局所化するための深層ニューラルネットワーク(XLSor)と,大規模CXRデータセットで事前学習した自己教師あり運動量コントラスト(MoCo)モデルのバックボーンを用いたCXR分類モデルである。
論文 参考訳(メタデータ) (2022-02-22T15:24:06Z) - Deep Residual 3D U-Net for Joint Segmentation and Texture Classification
of Nodules in Lung [91.3755431537592]
肺結節の分類法, そのテクスチャ分類, 肺CT像による後続の推奨について検討した。
提案手法は, 一般的なU-Netアーキテクチャファミリに基づくニューラルネットワークモデルと, 共同結節分割とそのテクスチャ分類タスクと, フォローアップレコメンデーションのためのアンサンブルベースモデルから構成される。
論文 参考訳(メタデータ) (2020-06-25T07:20:41Z) - Automatic Data Augmentation via Deep Reinforcement Learning for
Effective Kidney Tumor Segmentation [57.78765460295249]
医用画像セグメンテーションのための新しい学習ベースデータ拡張法を開発した。
本手法では,データ拡張モジュールと後続のセグメンテーションモジュールをエンドツーエンドのトレーニング方法で一貫した損失と,革新的に組み合わせる。
提案法の有効性を検証したCT腎腫瘍分節法について,本法を広範囲に評価した。
論文 参考訳(メタデータ) (2020-02-22T14:10:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。