Steady-state entanglement of interacting masses in free space through optimal feedback control
- URL: http://arxiv.org/abs/2408.07492v1
- Date: Wed, 14 Aug 2024 12:14:58 GMT
- Title: Steady-state entanglement of interacting masses in free space through optimal feedback control
- Authors: Klemens Winkler, Anton V. Zasedatelev, Benjamin A. Stickler, Uroš Delić, Andreas Deutschmann-Olek, Markus Aspelmeyer,
- Abstract summary: We employ linear quadratic Gaussian (LQG) control to engineer the phase space dynamics of the two masses.
We propose Einstein-Podolsky-Rosen (EPR)-type variance minimisation constraints for the feedback to facilitate unconditional entanglement generation.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We develop a feedback strategy based on optimal quantum feedback control for Gaussian systems to maximise the likelihood of steady-state entanglement detection between two directly interacting masses. We employ linear quadratic Gaussian (LQG) control to engineer the phase space dynamics of the two masses and propose Einstein-Podolsky-Rosen (EPR)-type variance minimisation constraints for the feedback to facilitate unconditional entanglement generation. This scheme allows for stationary entanglement in parameter regimes where strategies based on total energy minimisation ($cooling$) would fail. This feedback strategy, applied to the system of two masses driven out-of-thermal equilibrium [arXiv:2408.06251] enables unconditional entanglement generation under realistic experimental conditions.
Related papers
- Nonequilibrium entanglement between levitated masses under optimal control [37.69303106863453]
We present a protocol that maximizes entanglement generation between two masses interacting directly through $1/rn$ potential.
The protocol combines optimal quantum control of continuously measured masses with their non-equilibrium dynamics, driven by a time-dependent interaction strength.
arXiv Detail & Related papers (2024-08-12T16:02:42Z) - Incoherent GRAPE (inGRAPE) for optimization of quantum systems with environmentally assisted control [51.3422222472898]
We discuss applications of incoherent GRAPE method to high fidelity gate generation for open one- and two-qubit systems.
For a qutrit, a formulation of the environment-assisted incoherent control with time-dependent decoherence rates is provided.
arXiv Detail & Related papers (2024-03-26T05:13:26Z) - Generation of C-NOT, SWAP, and C-Z Gates for Two Qubits Using Coherent
and Incoherent Controls and Stochastic Optimization [56.47577824219207]
We consider a general form of the dynamics of open quantum systems determined by the Gorini-Kossakowsky-Sudarchhan-Lindblad type master equation.
We analyze the control problems of generating two-qubit C-NOT, SWAP, and C-Z gates using piecewise constant controls and optimization.
arXiv Detail & Related papers (2023-12-09T17:55:47Z) - Quantum control of continuous systems via nonharmonic potential modulation [0.0]
We present a theoretical proposal for manipulating a state of a single continuous-variable degree of freedom confined to a nonharmonic potential.
We demonstrate the generation of non-Gaussian states, including Fock, Gottesman-Kitaev-Preskill, multi-legged-cat, and cubic-phase states.
We propose protocols for single-shot state discrimination, algorithmic cooling, and correcting for nonlinear evolution.
arXiv Detail & Related papers (2023-11-28T14:30:22Z) - Control of open quantum systems via dynamical invariants [0.0]
We address the challenge of controlling quantum systems under environmental influences using the theory of dynamical invariants.
We employ a reverse engineering approach to develop control protocols designed to be robust against environmental noise and dissipation.
arXiv Detail & Related papers (2023-11-22T05:09:53Z) - Optimal State Manipulation for a Two-Qubit System Driven by Coherent and
Incoherent Controls [77.34726150561087]
State preparation is important for optimal control of two-qubit quantum systems.
We exploit two physically different coherent control and optimize the Hilbert-Schmidt target density matrices.
arXiv Detail & Related papers (2023-04-03T10:22:35Z) - Optimal control for state preparation in two-qubit open quantum systems
driven by coherent and incoherent controls via GRAPE approach [77.34726150561087]
We consider a model of two qubits driven by coherent and incoherent time-dependent controls.
The dynamics of the system is governed by a Gorini-Kossakowski-Sudarshan-Lindblad master equation.
We study evolution of the von Neumann entropy, purity, and one-qubit reduced density matrices under optimized controls.
arXiv Detail & Related papers (2022-11-04T15:20:18Z) - Robust control of linear systems and shortcut to adiabaticity based on
superoscillations [9.721400195178063]
Inverse engineering Lagrangian formalism developed here generalizes the one commonly used to describe the superoscillation phenomenon.
Our approach also allows to improve the sensing capabilities by an appropriate control of the system.
arXiv Detail & Related papers (2022-07-05T18:10:49Z) - On optimization of coherent and incoherent controls for two-level
quantum systems [77.34726150561087]
This article considers some control problems for closed and open two-level quantum systems.
The closed system's dynamics is governed by the Schr"odinger equation with coherent control.
The open system's dynamics is governed by the Gorini-Kossakowski-Sudarshan-Lindblad master equation.
arXiv Detail & Related papers (2022-05-05T09:08:03Z) - Adaptive Control and Regret Minimization in Linear Quadratic Gaussian
(LQG) Setting [91.43582419264763]
We propose LqgOpt, a novel reinforcement learning algorithm based on the principle of optimism in the face of uncertainty.
LqgOpt efficiently explores the system dynamics, estimates the model parameters up to their confidence interval, and deploys the controller of the most optimistic model.
arXiv Detail & Related papers (2020-03-12T19:56:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.