論文の概要: QirK: Question Answering via Intermediate Representation on Knowledge Graphs
- arxiv url: http://arxiv.org/abs/2408.07494v1
- Date: Wed, 14 Aug 2024 12:19:25 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-15 13:24:15.194479
- Title: QirK: Question Answering via Intermediate Representation on Knowledge Graphs
- Title(参考訳): QirK:知識グラフの中間表現による質問応答
- Authors: Jan Luca Scheerer, Anton Lykov, Moe Kayali, Ilias Fountalis, Dan Olteanu, Nikolaos Vasiloglou, Dan Suciu,
- Abstract要約: 我々は、知識グラフ(KG)上の自然言語質問に答えるシステムQirKを実演する。
QirKは、新興のLarge Language Models(LLMs)の範囲を超えて、構造的に複雑な質問に答えることができます。
QirKのデモビデオはhttps://youtu.be/6c81BLmOZ0Uで公開されている。
- 参考スコア(独自算出の注目度): 6.527176546718545
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We demonstrate QirK, a system for answering natural language questions on Knowledge Graphs (KG). QirK can answer structurally complex questions that are still beyond the reach of emerging Large Language Models (LLMs). It does so using a unique combination of database technology, LLMs, and semantic search over vector embeddings. The glue for these components is an intermediate representation (IR). The input question is mapped to IR using LLMs, which is then repaired into a valid relational database query with the aid of a semantic search on vector embeddings. This allows a practical synthesis of LLM capabilities and KG reliability. A short video demonstrating QirK is available at https://youtu.be/6c81BLmOZ0U.
- Abstract(参考訳): 本稿では,知識グラフ(KG)上で自然言語質問に回答するシステムであるQirKを紹介する。
QirKは、新しいLarge Language Models(LLMs)の範囲を超えて、構造的に複雑な質問に答えることができます。
データベース技術、LLM、ベクトル埋め込みのセマンティックサーチのユニークな組み合わせを使って実現している。
これらのコンポーネントのグルーは、中間表現(IR)である。
入力された質問はLLMを用いてIRにマッピングされ、ベクトル埋め込みのセマンティック検索の助けを借りて有効な関係データベースクエリに修復される。
これにより、LLM能力とKG信頼性の実用的な合成が可能となる。
QirKのデモビデオはhttps://youtu.be/6c81BLmOZ0Uで公開されている。
関連論文リスト
- Integrating Large Language Models with Graph-based Reasoning for Conversational Question Answering [58.17090503446995]
我々は,テキストや知識グラフ,テーブル,インフォボックスといった異質な情報源から収集された証拠について,文脈における質問の理解と推論の課題を組み合わせた会話型質問応答タスクに着目する。
提案手法はグラフ構造表現を用いて質問とその文脈に関する情報を集約する。
論文 参考訳(メタデータ) (2024-06-14T13:28:03Z) - LinkQ: An LLM-Assisted Visual Interface for Knowledge Graph Question-Answering [1.5238808518078564]
LinkQは,大規模言語モデル(LLM)を活用して,自然言語質問応答による知識グラフ(KG)クエリ構築を容易にするシステムである。
以上の結果から,KG質問応答にLinkQが有効であることが示唆された。
論文 参考訳(メタデータ) (2024-06-07T15:28:31Z) - Crafting Interpretable Embeddings by Asking LLMs Questions [89.49960984640363]
大規模言語モデル(LLM)は、自然言語処理タスクの増大に対して、テキスト埋め込みを急速に改善した。
質問応答埋め込み (QA-Emb) を導入し, 各特徴がLLMに対して質問された質問に対する回答を表す。
我々はQA-Embを用いて、言語刺激に対するfMRIボクセル応答を予測するための解釈可能なモデルを柔軟に生成する。
論文 参考訳(メタデータ) (2024-05-26T22:30:29Z) - Generate-on-Graph: Treat LLM as both Agent and KG in Incomplete Knowledge Graph Question Answering [87.67177556994525]
我々は、知識グラフ(KG)を探索しながら、新しい実写トリプルを生成する、Generate-on-Graph(GoG)と呼ばれる学習自由な手法を提案する。
GoGはIKGQAでLLMをエージェントとKGの両方として扱うThinking-Searching-Generatingフレームワークを通じて推論を行う。
論文 参考訳(メタデータ) (2024-04-23T04:47:22Z) - keqing: knowledge-based question answering is a nature chain-of-thought
mentor of LLM [27.76205400533089]
大規模言語モデル(LLM)は様々な自然言語処理(NLP)タスク、特に質問応答において顕著な性能を示した。
本稿では,知識グラフ上の質問関連構造化情報を取得するために,ChatGPTなどのLLMを支援する新しいフレームワークを提案する。
KBQAデータセットの実験結果から,Keqingは競合性能を達成でき,各質問に答える論理を説明できることがわかった。
論文 参考訳(メタデータ) (2023-12-31T08:39:04Z) - Search-in-the-Chain: Interactively Enhancing Large Language Models with
Search for Knowledge-intensive Tasks [121.74957524305283]
本稿では、情報検索(IR)とLarge Language Model(LLM)のインタラクションのための、textbfSearch-in-the-Chain(SearChain)という新しいフレームワークを提案する。
実験の結果、SearChainは複雑な知識集約タスクにおける最先端のベースラインを上回っていることがわかった。
論文 参考訳(メタデータ) (2023-04-28T10:15:25Z) - Logical Message Passing Networks with One-hop Inference on Atomic
Formulas [57.47174363091452]
本稿では,ニューラルネットワーク演算子から知識グラフの埋め込みを分解する,複雑な問合せ応答のためのフレームワークを提案する。
クエリグラフの上に、局所的な原子式上のワンホップ推論とグローバル論理的推論を結びつける論理メッセージパッシングニューラルネットワーク(LMPNN)を提案する。
我々のアプローチは、最先端のニューラルCQAモデルをもたらす。
論文 参考訳(メタデータ) (2023-01-21T02:34:06Z) - Relation-Aware Language-Graph Transformer for Question Answering [21.244992938222246]
本稿では,言語とグラフを関連づける質問応答変換器(QAT, Question Answering Transformer)を提案する。
具体的には、QATはメタパストークンを構築し、多様な構造的および意味的関係に基づいて関係中心の埋め込みを学習する。
我々は,CommonsenseQA や OpenBookQA などの常識質問応答データセットと,医療質問応答データセット MedQA-USMLE について,QAT の有効性を検証する。
論文 参考訳(メタデータ) (2022-12-02T05:10:10Z) - UniKGQA: Unified Retrieval and Reasoning for Solving Multi-hop Question
Answering Over Knowledge Graph [89.98762327725112]
KGQA(Multi-hop Question Answering over Knowledge Graph)は、自然言語の質問で言及されているトピックエンティティから、複数のホップを持つ回答エンティティを見つけることを目的としている。
我々は、モデルアーキテクチャとパラメータ学習の両方において、検索と推論を統合することで、マルチホップKGQAタスクの新しいアプローチであるUniKGQAを提案する。
論文 参考訳(メタデータ) (2022-12-02T04:08:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。