Protected Test-Time Adaptation via Online Entropy Matching: A Betting Approach
- URL: http://arxiv.org/abs/2408.07511v1
- Date: Wed, 14 Aug 2024 12:40:57 GMT
- Title: Protected Test-Time Adaptation via Online Entropy Matching: A Betting Approach
- Authors: Yarin Bar, Shalev Shaer, Yaniv Romano,
- Abstract summary: We present a novel approach for test-time adaptation via online self-training.
Our approach combines concepts in betting martingales and online learning to form a detection tool capable of reacting to distribution shifts.
Experimental results demonstrate that our approach improves test-time accuracy under distribution shifts while maintaining accuracy and calibration in their absence.
- Score: 14.958884168060097
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a novel approach for test-time adaptation via online self-training, consisting of two components. First, we introduce a statistical framework that detects distribution shifts in the classifier's entropy values obtained on a stream of unlabeled samples. Second, we devise an online adaptation mechanism that utilizes the evidence of distribution shifts captured by the detection tool to dynamically update the classifier's parameters. The resulting adaptation process drives the distribution of test entropy values obtained from the self-trained classifier to match those of the source domain, building invariance to distribution shifts. This approach departs from the conventional self-training method, which focuses on minimizing the classifier's entropy. Our approach combines concepts in betting martingales and online learning to form a detection tool capable of quickly reacting to distribution shifts. We then reveal a tight relation between our adaptation scheme and optimal transport, which forms the basis of our novel self-supervised loss. Experimental results demonstrate that our approach improves test-time accuracy under distribution shifts while maintaining accuracy and calibration in their absence, outperforming leading entropy minimization methods across various scenarios.
Related papers
- Noisy Correspondence Learning with Self-Reinforcing Errors Mitigation [63.180725016463974]
Cross-modal retrieval relies on well-matched large-scale datasets that are laborious in practice.
We introduce a novel noisy correspondence learning framework, namely textbfSelf-textbfReinforcing textbfErrors textbfMitigation (SREM)
arXiv Detail & Related papers (2023-12-27T09:03:43Z) - Invariant Anomaly Detection under Distribution Shifts: A Causal
Perspective [6.845698872290768]
Anomaly detection (AD) is the machine learning task of identifying highly discrepant abnormal samples.
Under the constraints of a distribution shift, the assumption that training samples and test samples are drawn from the same distribution breaks down.
We attempt to increase the resilience of anomaly detection models to different kinds of distribution shifts.
arXiv Detail & Related papers (2023-12-21T23:20:47Z) - Distribution Shift Inversion for Out-of-Distribution Prediction [57.22301285120695]
We propose a portable Distribution Shift Inversion algorithm for Out-of-Distribution (OoD) prediction.
We show that our method provides a general performance gain when plugged into a wide range of commonly used OoD algorithms.
arXiv Detail & Related papers (2023-06-14T08:00:49Z) - Improving Test-Time Adaptation via Shift-agnostic Weight Regularization
and Nearest Source Prototypes [18.140619966865955]
We propose a novel test-time adaptation strategy that adjusts the model pre-trained on the source domain using only unlabeled online data from the target domain.
We show that our method exhibits state-of-the-art performance on various standard benchmarks and even outperforms its supervised counterpart.
arXiv Detail & Related papers (2022-07-24T10:17:05Z) - Robust Calibration with Multi-domain Temperature Scaling [86.07299013396059]
We develop a systematic calibration model to handle distribution shifts by leveraging data from multiple domains.
Our proposed method -- multi-domain temperature scaling -- uses the robustness in the domains to improve calibration under distribution shift.
arXiv Detail & Related papers (2022-06-06T17:32:12Z) - Distribution Mismatch Correction for Improved Robustness in Deep Neural
Networks [86.42889611784855]
normalization methods increase the vulnerability with respect to noise and input corruptions.
We propose an unsupervised non-parametric distribution correction method that adapts the activation distribution of each layer.
In our experiments, we empirically show that the proposed method effectively reduces the impact of intense image corruptions.
arXiv Detail & Related papers (2021-10-05T11:36:25Z) - Training on Test Data with Bayesian Adaptation for Covariate Shift [96.3250517412545]
Deep neural networks often make inaccurate predictions with unreliable uncertainty estimates.
We derive a Bayesian model that provides for a well-defined relationship between unlabeled inputs under distributional shift and model parameters.
We show that our method improves both accuracy and uncertainty estimation.
arXiv Detail & Related papers (2021-09-27T01:09:08Z) - Test-Time Adaptation to Distribution Shift by Confidence Maximization
and Input Transformation [44.494319305269535]
neural networks often exhibit poor performance on data unlikely under the train-time data distribution.
This paper focuses on the fully test-time adaptation setting, where only unlabeled data from the target distribution is required.
We propose a novel loss that improves test-time adaptation by addressing both premature convergence and instability of entropy minimization.
arXiv Detail & Related papers (2021-06-28T22:06:10Z) - A One-step Approach to Covariate Shift Adaptation [82.01909503235385]
A default assumption in many machine learning scenarios is that the training and test samples are drawn from the same probability distribution.
We propose a novel one-step approach that jointly learns the predictive model and the associated weights in one optimization.
arXiv Detail & Related papers (2020-07-08T11:35:47Z) - Calibrated Adversarial Refinement for Stochastic Semantic Segmentation [5.849736173068868]
We present a strategy for learning a calibrated predictive distribution over semantic maps, where the probability associated with each prediction reflects its ground truth correctness likelihood.
We demonstrate the versatility and robustness of the approach by achieving state-of-the-art results on the multigrader LIDC dataset and on a modified Cityscapes dataset with injected ambiguities.
We show that the core design can be adapted to other tasks requiring learning a calibrated predictive distribution by experimenting on a toy regression dataset.
arXiv Detail & Related papers (2020-06-23T16:39:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.