論文の概要: Improved 3D Whole Heart Geometry from Sparse CMR Slices
- arxiv url: http://arxiv.org/abs/2408.07532v1
- Date: Wed, 14 Aug 2024 13:03:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-15 13:14:29.202520
- Title: Improved 3D Whole Heart Geometry from Sparse CMR Slices
- Title(参考訳): スパースCMRスライスによる3次元心筋形状の改善
- Authors: Yiyang Xu, Hao Xu, Matthew Sinclair, Esther Puyol-Antón, Steven A Niederer, Amedeo Chiribiri, Steven E Williams, Michelle C Williams, Alistair A Young,
- Abstract要約: 心臓磁気共鳴法(CMR)とCT法(CT)は、心臓血管疾患の患者を診断するための2つの一般的な非侵襲的画像診断法である。
CMRは通常、複数のスパース2Dスライスを取得し、スライス間には避けられない呼吸運動アーチファクトを持ち、CTは等方性密度データを取得するが、電離放射線を使用する。
スライスシフトアルゴリズム(SSA)、空間変換器ネットワーク(STN)、ラベル変換器ネットワーク(LTN)の組み合わせを検討する。
- 参考スコア(独自算出の注目度): 3.701571763780745
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Cardiac magnetic resonance (CMR) imaging and computed tomography (CT) are two common non-invasive imaging methods for assessing patients with cardiovascular disease. CMR typically acquires multiple sparse 2D slices, with unavoidable respiratory motion artefacts between slices, whereas CT acquires isotropic dense data but uses ionising radiation. In this study, we explore the combination of Slice Shifting Algorithm (SSA), Spatial Transformer Network (STN), and Label Transformer Network (LTN) to: 1) correct respiratory motion between segmented slices, and 2) transform sparse segmentation data into dense segmentation. All combinations were validated using synthetic motion-corrupted CMR slice segmentation generated from CT in 1699 cases, where the dense CT serves as the ground truth. In 199 testing cases, SSA-LTN achieved the best results for Dice score and Huasdorff distance (94.0% and 4.7 mm respectively, average over 5 labels) but gave topological errors in 8 cases. STN was effective as a plug-in tool for correcting all topological errors with minimal impact on overall performance (93.5% and 5.0 mm respectively). SSA also proves to be a valuable plug-in tool, enhancing performance over both STN-based and LTN-based models. The code for these different combinations is available at https://github.com/XESchong/STACOM2024.
- Abstract(参考訳): 心臓磁気共鳴法(CMR)とCT法(CT)は、心臓血管疾患の患者を診断するための2つの一般的な非侵襲的画像診断法である。
CMRは通常、複数のスパース2Dスライスを取得し、スライス間には避けられない呼吸運動アーチファクトを持ち、CTは等方性密度データを取得するが、電離放射線を使用する。
本研究では,Slice Shifting Algorithm(SSA),Spatial Transformer Network(STN),Label Transformer Network(LTN)の組み合わせを検討した。
1)分節スライス間の呼吸運動の正しさ,及び
2)スパースセグメンテーションデータを密度セグメンテーションに変換する。
これらの組み合わせは1699年にCTから生成された合成運動崩壊CMRスライスセグメンテーションを用いて検証された。
199の試験ケースでは、SSA-LTNはDiceスコアとHuasdorff距離(それぞれ94.0%と4.7mm、平均5ラベル以上)で最良の結果を得たが、位相誤差は8例であった。
STNは、全体的な性能(それぞれ93.5%と5.0mm)に最小限の影響で全てのトポロジカルエラーを修正するプラグインツールとして有効であった。
SSAはまた、STNベースのモデルとLTNベースのモデルの両方のパフォーマンスを向上させる、貴重なプラグインツールであることを証明している。
これらの組み合わせのコードはhttps://github.com/XESchong/STACOM2024で公開されている。
関連論文リスト
- TotalSegmentator MRI: Sequence-Independent Segmentation of 59 Anatomical Structures in MR images [62.53931644063323]
本研究では,TotalSegmentatorをMR画像に拡張した。
このデータセットに基づいてnnU-Netセグメンテーションアルゴリズムを訓練し、類似度係数(Dice)を計算し、モデルの性能を評価した。
このモデルは、他の2つの公開セグメンテーションモデル(Dice score 0.824 vs 0.762; p0.001 and 0.762 versus 0.542; p)を大きく上回った。
論文 参考訳(メタデータ) (2024-05-29T20:15:54Z) - Minimally Interactive Segmentation of Soft-Tissue Tumors on CT and MRI
using Deep Learning [0.0]
我々は,CTおよびMRIを用いたソフト・タウト・腫瘍(STT)のための,最小限の対話型深層学習に基づくセグメンテーション法を開発した。
この方法は、畳み込みニューラルネットワークの入力として、腫瘍の極端な境界付近で6つの点をクリックする必要がある。
論文 参考訳(メタデータ) (2024-02-12T16:15:28Z) - Learned Local Attention Maps for Synthesising Vessel Segmentations [43.314353195417326]
我々は、T2 MRIのみから、Willis(CoW)円の主大脳動脈の分節を合成するためのエンコーダ・デコーダモデルを提案する。
これは、セグメンテーションラベルを拡張することによって生成された学習されたローカルアテンションマップを使用し、ネットワークはCoWの合成に関連するT2 MRIからのみ情報を抽出する。
論文 参考訳(メタデータ) (2023-08-24T15:32:27Z) - Segmentation of Aortic Vessel Tree in CT Scans with Deep Fully
Convolutional Networks [4.062948258086793]
大動脈疾患の早期発見,診断,予後には,CTスキャンによる大動脈血管木の自動的,正確な分画が不可欠である。
我々は2段階の完全畳み込みネットワーク(FCN)を用いて、複数のセンターからスキャン中のAVTを自動的に分割する。
論文 参考訳(メタデータ) (2023-05-16T22:24:01Z) - Attention-based Saliency Maps Improve Interpretability of Pneumothorax
Classification [52.77024349608834]
視覚変換器(ViT)の胸部X線撮影(CXR)分類性能と注意ベース唾液の解釈可能性について検討する。
ViTは、CheXpert、Chest X-Ray 14、MIMIC CXR、VinBigDataの4つの公開データセットを用いて、肺疾患分類のために微調整された。
ViTsは最先端のCNNと比べてCXR分類AUCに匹敵するものであった。
論文 参考訳(メタデータ) (2023-03-03T12:05:41Z) - TotalSegmentator: robust segmentation of 104 anatomical structures in CT
images [48.50994220135258]
身体CT画像の深層学習セグメント化モデルを提案する。
このモデルは、臓器の容積、疾患の特徴、外科的または放射線療法計画などのユースケースに関連する104の解剖学的構造を区分することができる。
論文 参考訳(メタデータ) (2022-08-11T15:16:40Z) - CNN Filter Learning from Drawn Markers for the Detection of Suggestive
Signs of COVID-19 in CT Images [58.720142291102135]
畳み込みニューラルネットワーク(CNN)のフィルタを推定するために,大規模な注釈付きデータセットやバックプロパゲーションを必要としない手法を提案する。
少数のCT画像に対して、ユーザは、代表的な正常領域と異常領域にマーカーを描画する。
本発明の方法は、カーネルがマークされたものに似た拡張領域に特有な一連の畳み込み層からなる特徴抽出器を生成する。
論文 参考訳(メタデータ) (2021-11-16T15:03:42Z) - Unpaired cross-modality educed distillation (CMEDL) applied to CT lung
tumor segmentation [4.409836695738518]
我々は,不対位CTおよびMRIスキャンを用いて,新しいクロスモーダル教育蒸留法(CMEDL)を考案した。
我々のフレームワークは、エンドツーエンドで訓練されたI2I翻訳、教師、学生セグメンテーションネットワークを使用している。
論文 参考訳(メタデータ) (2021-07-16T15:58:15Z) - Classification of COVID-19 in CT Scans using Multi-Source Transfer
Learning [91.3755431537592]
我々は,従来のトランスファー学習の改良にマルチソース・トランスファー・ラーニングを応用して,CTスキャンによる新型コロナウイルスの分類を提案する。
マルチソースファインチューニングアプローチでは、ImageNetで微調整されたベースラインモデルよりも優れています。
我々の最高のパフォーマンスモデルは、0.893の精度と0.897のリコールスコアを達成でき、ベースラインのリコールスコアを9.3%上回った。
論文 参考訳(メタデータ) (2020-09-22T11:53:06Z) - Deep Learning based detection of Acute Aortic Syndrome in contrast CT
images [2.2928817466049405]
急性大動脈症候群 (AAS) は大動脈の生命を脅かす一群である。
我々はCT画像におけるAAS検出のためのエンドツーエンド自動アプローチを開発した。
論文 参考訳(メタデータ) (2020-04-03T16:12:04Z) - A$^3$DSegNet: Anatomy-aware artifact disentanglement and segmentation
network for unpaired segmentation, artifact reduction, and modality
translation [18.500206499468902]
CBCT画像は, ノイズ, 組織コントラストの低下, 金属物の存在により, 品質が低く, 人工物が混入している。
脊椎のアノテーションを付加した、人工物のない高品質なCT画像が豊富に存在する。
CBCT椎体分割モデルの構築には, アノテーションを付加した未確認CT画像が有用である。
論文 参考訳(メタデータ) (2020-01-02T06:37:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。