Improved 3D Whole Heart Geometry from Sparse CMR Slices
- URL: http://arxiv.org/abs/2408.07532v1
- Date: Wed, 14 Aug 2024 13:03:48 GMT
- Title: Improved 3D Whole Heart Geometry from Sparse CMR Slices
- Authors: Yiyang Xu, Hao Xu, Matthew Sinclair, Esther Puyol-Antón, Steven A Niederer, Amedeo Chiribiri, Steven E Williams, Michelle C Williams, Alistair A Young,
- Abstract summary: Cardiac magnetic resonance (CMR) imaging and computed tomography (CT) are two common non-invasive imaging methods for assessing patients with cardiovascular disease.
CMR typically acquires multiple sparse 2D slices, with unavoidable respiratory motion artefacts between slices, whereas CT acquires isotropic dense data but uses ionising radiation.
We explore the combination of Slice Shifting Algorithm (SSA), Spatial Transformer Network (STN), and Label Transformer Network (LTN) to: 1) correct respiratory motion between segmented slices, and 2) transform sparse segmentation data into dense segmentation.
- Score: 3.701571763780745
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Cardiac magnetic resonance (CMR) imaging and computed tomography (CT) are two common non-invasive imaging methods for assessing patients with cardiovascular disease. CMR typically acquires multiple sparse 2D slices, with unavoidable respiratory motion artefacts between slices, whereas CT acquires isotropic dense data but uses ionising radiation. In this study, we explore the combination of Slice Shifting Algorithm (SSA), Spatial Transformer Network (STN), and Label Transformer Network (LTN) to: 1) correct respiratory motion between segmented slices, and 2) transform sparse segmentation data into dense segmentation. All combinations were validated using synthetic motion-corrupted CMR slice segmentation generated from CT in 1699 cases, where the dense CT serves as the ground truth. In 199 testing cases, SSA-LTN achieved the best results for Dice score and Huasdorff distance (94.0% and 4.7 mm respectively, average over 5 labels) but gave topological errors in 8 cases. STN was effective as a plug-in tool for correcting all topological errors with minimal impact on overall performance (93.5% and 5.0 mm respectively). SSA also proves to be a valuable plug-in tool, enhancing performance over both STN-based and LTN-based models. The code for these different combinations is available at https://github.com/XESchong/STACOM2024.
Related papers
- TotalSegmentator MRI: Sequence-Independent Segmentation of 59 Anatomical Structures in MR images [62.53931644063323]
In this study we extended the capabilities of TotalSegmentator to MR images.
We trained an nnU-Net segmentation algorithm on this dataset and calculated similarity coefficients (Dice) to evaluate the model's performance.
The model significantly outperformed two other publicly available segmentation models (Dice score 0.824 versus 0.762; p0.001 and 0.762 versus 0.542; p)
arXiv Detail & Related papers (2024-05-29T20:15:54Z) - Minimally Interactive Segmentation of Soft-Tissue Tumors on CT and MRI
using Deep Learning [0.0]
We develop a minimally interactive deep learning-based segmentation method for soft-tissue tumors (STTs) on CT and MRI.
The method requires the user to click six points near the tumor's extreme boundaries to serve as input for a Convolutional Neural Network.
arXiv Detail & Related papers (2024-02-12T16:15:28Z) - Learned Local Attention Maps for Synthesising Vessel Segmentations [43.314353195417326]
We present an encoder-decoder model for synthesising segmentations of the main cerebral arteries in the circle of Willis (CoW) from only T2 MRI.
It uses learned local attention maps generated by dilating the segmentation labels, which forces the network to only extract information from the T2 MRI relevant to synthesising the CoW.
arXiv Detail & Related papers (2023-08-24T15:32:27Z) - Segmentation of Aortic Vessel Tree in CT Scans with Deep Fully
Convolutional Networks [4.062948258086793]
Automatic and accurate segmentation of aortic vessel tree (AVT) in computed tomography (CT) scans is crucial for early detection, diagnosis and prognosis of aortic diseases.
We use two-stage fully convolutional networks (FCNs) to automatically segment AVT in scans from multiple centers.
arXiv Detail & Related papers (2023-05-16T22:24:01Z) - Attention-based Saliency Maps Improve Interpretability of Pneumothorax
Classification [52.77024349608834]
To investigate chest radiograph (CXR) classification performance of vision transformers (ViT) and interpretability of attention-based saliency.
ViTs were fine-tuned for lung disease classification using four public data sets: CheXpert, Chest X-Ray 14, MIMIC CXR, and VinBigData.
ViTs had comparable CXR classification AUCs compared with state-of-the-art CNNs.
arXiv Detail & Related papers (2023-03-03T12:05:41Z) - TotalSegmentator: robust segmentation of 104 anatomical structures in CT
images [48.50994220135258]
We present a deep learning segmentation model for body CT images.
The model can segment 104 anatomical structures relevant for use cases such as organ volumetry, disease characterization, and surgical or radiotherapy planning.
arXiv Detail & Related papers (2022-08-11T15:16:40Z) - CNN Filter Learning from Drawn Markers for the Detection of Suggestive
Signs of COVID-19 in CT Images [58.720142291102135]
We propose a method that does not require either large annotated datasets or backpropagation to estimate the filters of a convolutional neural network (CNN)
For a few CT images, the user draws markers at representative normal and abnormal regions.
The method generates a feature extractor composed of a sequence of convolutional layers, whose kernels are specialized in enhancing regions similar to the marked ones.
arXiv Detail & Related papers (2021-11-16T15:03:42Z) - Unpaired cross-modality educed distillation (CMEDL) applied to CT lung
tumor segmentation [4.409836695738518]
We develop a new crossmodality educed distillation (CMEDL) approach, using unpaired CT and MRI scans.
Our framework uses an end-to-end trained unpaired I2I translation, teacher, and student segmentation networks.
arXiv Detail & Related papers (2021-07-16T15:58:15Z) - Classification of COVID-19 in CT Scans using Multi-Source Transfer
Learning [91.3755431537592]
We propose the use of Multi-Source Transfer Learning to improve upon traditional Transfer Learning for the classification of COVID-19 from CT scans.
With our multi-source fine-tuning approach, our models outperformed baseline models fine-tuned with ImageNet.
Our best performing model was able to achieve an accuracy of 0.893 and a Recall score of 0.897, outperforming its baseline Recall score by 9.3%.
arXiv Detail & Related papers (2020-09-22T11:53:06Z) - Deep Learning based detection of Acute Aortic Syndrome in contrast CT
images [2.2928817466049405]
Acute aortic syndrome (AAS) is a group of life threatening conditions of the aorta.
We have developed an end-to-end automatic approach to detect AAS in computed tomography (CT) images.
arXiv Detail & Related papers (2020-04-03T16:12:04Z) - A$^3$DSegNet: Anatomy-aware artifact disentanglement and segmentation
network for unpaired segmentation, artifact reduction, and modality
translation [18.500206499468902]
CBCT images are of low-quality and artifact-laden due to noise, poor tissue contrast, and the presence of metallic objects.
There exists a wealth of artifact-free, high quality CT images with vertebra annotations.
This motivates us to build a CBCT vertebra segmentation model using unpaired CT images with annotations.
arXiv Detail & Related papers (2020-01-02T06:37:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.