A Two-Stage Generative Model with CycleGAN and Joint Diffusion for
MRI-based Brain Tumor Detection
- URL: http://arxiv.org/abs/2311.03074v1
- Date: Mon, 6 Nov 2023 12:58:26 GMT
- Title: A Two-Stage Generative Model with CycleGAN and Joint Diffusion for
MRI-based Brain Tumor Detection
- Authors: Wenxin Wang, Zhuo-Xu Cui, Guanxun Cheng, Chentao Cao, Xi Xu, Ziwei
Liu, Haifeng Wang, Yulong Qi, Dong Liang and Yanjie Zhu
- Abstract summary: We propose a novel framework Two-Stage Generative Model (TSGM) to improve brain tumor detection and segmentation.
CycleGAN is trained on unpaired data to generate abnormal images from healthy images as data prior.
VE-JP is implemented to reconstruct healthy images using synthetic paired abnormal images as a guide.
- Score: 41.454028276986946
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate detection and segmentation of brain tumors is critical for medical
diagnosis. However, current supervised learning methods require extensively
annotated images and the state-of-the-art generative models used in
unsupervised methods often have limitations in covering the whole data
distribution. In this paper, we propose a novel framework Two-Stage Generative
Model (TSGM) that combines Cycle Generative Adversarial Network (CycleGAN) and
Variance Exploding stochastic differential equation using joint probability
(VE-JP) to improve brain tumor detection and segmentation. The CycleGAN is
trained on unpaired data to generate abnormal images from healthy images as
data prior. Then VE-JP is implemented to reconstruct healthy images using
synthetic paired abnormal images as a guide, which alters only pathological
regions but not regions of healthy. Notably, our method directly learned the
joint probability distribution for conditional generation. The residual between
input and reconstructed images suggests the abnormalities and a thresholding
method is subsequently applied to obtain segmentation results. Furthermore, the
multimodal results are weighted with different weights to improve the
segmentation accuracy further. We validated our method on three datasets, and
compared with other unsupervised methods for anomaly detection and
segmentation. The DSC score of 0.8590 in BraTs2020 dataset, 0.6226 in ITCS
dataset and 0.7403 in In-house dataset show that our method achieves better
segmentation performance and has better generalization.
Related papers
- Spatial-aware Attention Generative Adversarial Network for Semi-supervised Anomaly Detection in Medical Image [63.59114880750643]
We introduce a novel Spatial-aware Attention Generative Adrialversa Network (SAGAN) for one-class semi-supervised generation of health images.
SAGAN generates high-quality health images corresponding to unlabeled data, guided by the reconstruction of normal images and restoration of pseudo-anomaly images.
Extensive experiments on three medical datasets demonstrate that the proposed SAGAN outperforms the state-of-the-art methods.
arXiv Detail & Related papers (2024-05-21T15:41:34Z) - Discrepancy-based Diffusion Models for Lesion Detection in Brain MRI [1.8420387715849447]
Diffusion probabilistic models (DPMs) have exhibited significant effectiveness in computer vision tasks.
Their notable performance heavily relies on labelled datasets, which limits their application in medical images.
This paper introduces a novel framework by incorporating distinctive discrepancy features.
arXiv Detail & Related papers (2024-05-08T11:26:49Z) - Adapting Visual-Language Models for Generalizable Anomaly Detection in Medical Images [68.42215385041114]
This paper introduces a novel lightweight multi-level adaptation and comparison framework to repurpose the CLIP model for medical anomaly detection.
Our approach integrates multiple residual adapters into the pre-trained visual encoder, enabling a stepwise enhancement of visual features across different levels.
Our experiments on medical anomaly detection benchmarks demonstrate that our method significantly surpasses current state-of-the-art models.
arXiv Detail & Related papers (2024-03-19T09:28:19Z) - Diffusion Models for Counterfactual Generation and Anomaly Detection in Brain Images [39.94162291765236]
We present a weakly supervised method to generate a healthy version of a diseased image and then use it to obtain a pixel-wise anomaly map.
We employ a diffusion model trained on healthy samples and combine Denoising Diffusion Probabilistic Model (DDPM) and Denoising Implicit Model (DDIM) at each step of the sampling process.
arXiv Detail & Related papers (2023-08-03T21:56:50Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
In this paper, we propose a novel reliable multi-scale wavelet-enhanced transformer network.
We develop a novel segmentation backbone that integrates a wavelet-enhanced feature extractor network and a multi-scale transformer module.
Our proposed method achieves better segmentation accuracy with a high degree of reliability as compared to other state-of-the-art segmentation approaches.
arXiv Detail & Related papers (2022-12-01T07:32:56Z) - Mediastinal Lymph Node Detection and Segmentation Using Deep Learning [1.7188280334580195]
In clinical practice, computed tomography (CT) and positron emission tomography (PET) imaging detect abnormal lymph nodes (LNs)
Deep convolutional neural networks frequently segment items in medical photographs.
A well-established deep learning technique UNet was modified using bilinear and total generalized variation (TGV) based up strategy to segment and detect mediastinal lymph nodes.
The modified UNet maintains texture discontinuities, selects noisy areas, searches appropriate balance points through backpropagation, and recreates image resolution.
arXiv Detail & Related papers (2022-11-24T02:55:20Z) - Generative Adversarial Networks for Weakly Supervised Generation and Evaluation of Brain Tumor Segmentations on MR Images [0.0]
This work presents a weakly supervised approach to segment anomalies in 2D magnetic resonance images.
We train a generative adversarial network (GAN) that converts cancerous images to healthy variants.
Non-cancerous variants can also be used to evaluate the segmentations in a weakly supervised fashion.
arXiv Detail & Related papers (2022-11-10T00:04:46Z) - Harmonizing Pathological and Normal Pixels for Pseudo-healthy Synthesis [68.5287824124996]
We present a new type of discriminator, the segmentor, to accurately locate the lesions and improve the visual quality of pseudo-healthy images.
We apply the generated images into medical image enhancement and utilize the enhanced results to cope with the low contrast problem.
Comprehensive experiments on the T2 modality of BraTS demonstrate that the proposed method substantially outperforms the state-of-the-art methods.
arXiv Detail & Related papers (2022-03-29T08:41:17Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.