SigmaRL: A Sample-Efficient and Generalizable Multi-Agent Reinforcement Learning Framework for Motion Planning
- URL: http://arxiv.org/abs/2408.07644v1
- Date: Wed, 14 Aug 2024 16:16:51 GMT
- Title: SigmaRL: A Sample-Efficient and Generalizable Multi-Agent Reinforcement Learning Framework for Motion Planning
- Authors: Jianye Xu, Pan Hu, Bassam Alrifaee,
- Abstract summary: This paper introduces an open-source, decentralized framework named SigmaRL, designed to enhance both sample efficiency and generalization of multi-agent Reinforcement Learning (RL)
We propose five strategies to design information-dense observations, focusing on general features that are applicable to most traffic scenarios.
We train our RL agents using these strategies on an intersection and evaluate their generalization through numerical experiments across completely unseen traffic scenarios, including a new intersection, an on-ramp, and a roundabout.
- Score: 0.6668116630521236
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper introduces an open-source, decentralized framework named SigmaRL, designed to enhance both sample efficiency and generalization of multi-agent Reinforcement Learning (RL) for motion planning of connected and automated vehicles. Most RL agents exhibit a limited capacity to generalize, often focusing narrowly on specific scenarios, and are usually evaluated in similar or even the same scenarios seen during training. Various methods have been proposed to address these challenges, including experience replay and regularization. However, how observation design in RL affects sample efficiency and generalization remains an under-explored area. We address this gap by proposing five strategies to design information-dense observations, focusing on general features that are applicable to most traffic scenarios. We train our RL agents using these strategies on an intersection and evaluate their generalization through numerical experiments across completely unseen traffic scenarios, including a new intersection, an on-ramp, and a roundabout. Incorporating these information-dense observations reduces training times to under one hour on a single CPU, and the evaluation results reveal that our RL agents can effectively zero-shot generalize. Code: github.com/cas-lab-munich/SigmaRL
Related papers
- Sample Efficient Myopic Exploration Through Multitask Reinforcement
Learning with Diverse Tasks [53.44714413181162]
This paper shows that when an agent is trained on a sufficiently diverse set of tasks, a generic policy-sharing algorithm with myopic exploration design can be sample-efficient.
To the best of our knowledge, this is the first theoretical demonstration of the "exploration benefits" of MTRL.
arXiv Detail & Related papers (2024-03-03T22:57:44Z) - RL-ViGen: A Reinforcement Learning Benchmark for Visual Generalization [23.417092819516185]
We introduce RL-ViGen: a novel Reinforcement Learning Benchmark for Visual Generalization.
RL-ViGen contains diverse tasks and a wide spectrum of generalization types, thereby facilitating the derivation of more reliable conclusions.
Our aspiration is that RL-ViGen will serve as a catalyst in the future creation of universal visual generalization RL agents.
arXiv Detail & Related papers (2023-07-15T05:45:37Z) - A Survey of Meta-Reinforcement Learning [69.76165430793571]
We cast the development of better RL algorithms as a machine learning problem itself in a process called meta-RL.
We discuss how, at a high level, meta-RL research can be clustered based on the presence of a task distribution and the learning budget available for each individual task.
We conclude by presenting the open problems on the path to making meta-RL part of the standard toolbox for a deep RL practitioner.
arXiv Detail & Related papers (2023-01-19T12:01:41Z) - Mastering the Unsupervised Reinforcement Learning Benchmark from Pixels [112.63440666617494]
Reinforcement learning algorithms can succeed but require large amounts of interactions between the agent and the environment.
We propose a new method to solve it, using unsupervised model-based RL, for pre-training the agent.
We show robust performance on the Real-Word RL benchmark, hinting at resiliency to environment perturbations during adaptation.
arXiv Detail & Related papers (2022-09-24T14:22:29Z) - Driver Dojo: A Benchmark for Generalizable Reinforcement Learning for
Autonomous Driving [1.496194593196997]
We propose a benchmark for generalizable reinforcement learning for autonomous driving.
Our application-oriented benchmark enables a better understanding of the impact of design decisions.
Our benchmark aims to encourage researchers to propose solutions that are able to successfully generalize across scenarios.
arXiv Detail & Related papers (2022-07-23T06:29:43Z) - Contextualize Me -- The Case for Context in Reinforcement Learning [49.794253971446416]
Contextual Reinforcement Learning (cRL) provides a framework to model such changes in a principled manner.
We show how cRL contributes to improving zero-shot generalization in RL through meaningful benchmarks and structured reasoning about generalization tasks.
arXiv Detail & Related papers (2022-02-09T15:01:59Z) - Cross-Trajectory Representation Learning for Zero-Shot Generalization in
RL [21.550201956884532]
generalize policies learned on a few tasks over a high-dimensional observation space to similar tasks not seen during training.
Many promising approaches to this challenge consider RL as a process of training two functions simultaneously.
We propose Cross-Trajectory Representation Learning (CTRL), a method that runs within an RL agent and conditions its encoder to recognize behavioral similarity in observations.
arXiv Detail & Related papers (2021-06-04T00:43:10Z) - Dif-MAML: Decentralized Multi-Agent Meta-Learning [54.39661018886268]
We propose a cooperative multi-agent meta-learning algorithm, referred to as MAML or Dif-MAML.
We show that the proposed strategy allows a collection of agents to attain agreement at a linear rate and to converge to a stationary point of the aggregate MAML.
Simulation results illustrate the theoretical findings and the superior performance relative to the traditional non-cooperative setting.
arXiv Detail & Related papers (2020-10-06T16:51:09Z) - Dynamics Generalization via Information Bottleneck in Deep Reinforcement
Learning [90.93035276307239]
We propose an information theoretic regularization objective and an annealing-based optimization method to achieve better generalization ability in RL agents.
We demonstrate the extreme generalization benefits of our approach in different domains ranging from maze navigation to robotic tasks.
This work provides a principled way to improve generalization in RL by gradually removing information that is redundant for task-solving.
arXiv Detail & Related papers (2020-08-03T02:24:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.