The Death of Schema Linking? Text-to-SQL in the Age of Well-Reasoned Language Models
- URL: http://arxiv.org/abs/2408.07702v2
- Date: Sun, 18 Aug 2024 19:06:04 GMT
- Title: The Death of Schema Linking? Text-to-SQL in the Age of Well-Reasoned Language Models
- Authors: Karime Maamari, Fadhil Abubaker, Daniel Jaroslawicz, Amine Mhedhbi,
- Abstract summary: We revisit schema linking when using the latest generation of large language models (LLMs)
We find empirically that newer models are adept at utilizing relevant schema elements during generation even in the presence of large numbers of irrelevant ones.
Instead of filtering contextual information, we highlight techniques such as augmentation, selection, and correction, and adopt them to improve the accuracy of our Text-to-BIRD pipeline.
- Score: 0.9149661171430259
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Schema linking is a crucial step in Text-to-SQL pipelines. Its goal is to retrieve the relevant tables and columns of a target database for a user's query while disregarding irrelevant ones. However, imperfect schema linking can often exclude required columns needed for accurate query generation. In this work, we revisit schema linking when using the latest generation of large language models (LLMs). We find empirically that newer models are adept at utilizing relevant schema elements during generation even in the presence of large numbers of irrelevant ones. As such, our Text-to-SQL pipeline entirely forgoes schema linking in cases where the schema fits within the model's context window in order to minimize issues due to filtering required schema elements. Furthermore, instead of filtering contextual information, we highlight techniques such as augmentation, selection, and correction, and adopt them to improve the accuracy of our Text-to-SQL pipeline. Our approach ranks first on the BIRD benchmark achieving an accuracy of 71.83%.
Related papers
- RSL-SQL: Robust Schema Linking in Text-to-SQL Generation [51.00761167842468]
We propose a novel framework called RSL- that combines bidirectional schema linking, contextual information augmentation, binary selection strategy, and multi-turn self-correction.
benchmarks demonstrate that our approach achieves SOTA execution accuracy among open-source solutions, with 67.2% on BIRD and 87.9% on GPT-4ocorrection.
Our approach outperforms a series of GPT-4 based Text-to-Seek systems when adopting DeepSeek (much cheaper) with same intact prompts.
arXiv Detail & Related papers (2024-10-31T16:22:26Z) - SQL-to-Schema Enhances Schema Linking in Text-to-SQL [15.6857201570992]
In text-to-speech methods, there is a need to filter out unnecessary tables and columns.
Previous approaches have involved sorting tables and columns based on their relevance to the question.
We propose an inventive schema linking method in two steps.
arXiv Detail & Related papers (2024-05-15T12:22:48Z) - Schema-Aware Multi-Task Learning for Complex Text-to-SQL [4.913409359995421]
We present a schema-aware multi-task learning framework (named MT) for complicatedsql queries.
Specifically, we design a schema linking discriminator module to distinguish the valid question-schema linkings.
On the decoder side, we define 6-type relationships to describe the connections between tables and columns.
arXiv Detail & Related papers (2024-03-09T01:13:37Z) - CRUSH4SQL: Collective Retrieval Using Schema Hallucination For Text2SQL [47.14954737590405]
Existing text-to-text generators require the entire schema to be encoded with user text.
Standard dense retrieval techniques are inadequate for schema subsetting a large structured database.
We introduce three benchmarks for schema subsetting on large databases.
arXiv Detail & Related papers (2023-11-02T12:13:52Z) - Improving Text-to-SQL Semantic Parsing with Fine-grained Query
Understanding [84.04706075621013]
We present a general-purpose, modular neural semantic parsing framework based on token-level fine-grained query understanding.
Our framework consists of three modules: named entity recognizer (NER), neural entity linker (NEL) and neural entity linker (NSP)
arXiv Detail & Related papers (2022-09-28T21:00:30Z) - Semantic Enhanced Text-to-SQL Parsing via Iteratively Learning Schema
Linking Graph [6.13728903057727]
The generalizability to new databases is of vital importance to Text-to- systems which aim to parse human utterances intosql statements.
In this paper, we propose a framework named IS ESL to iteratively build a enhanced semantic schema-linking graph between question tokens and database schemas.
Extensive experiments on three benchmarks demonstrate that IS ESL could consistently outperform the baselines and further investigations show its generalizability and robustness.
arXiv Detail & Related papers (2022-08-08T03:59:33Z) - Proton: Probing Schema Linking Information from Pre-trained Language
Models for Text-to-SQL Parsing [66.55478402233399]
We propose a framework to elicit relational structures via a probing procedure based on Poincar'e distance metric.
Compared with commonly-used rule-based methods for schema linking, we found that probing relations can robustly capture semantic correspondences.
Our framework sets new state-of-the-art performance on three benchmarks.
arXiv Detail & Related papers (2022-06-28T14:05:25Z) - ShadowGNN: Graph Projection Neural Network for Text-to-SQL Parser [36.12921337235763]
We propose a new architecture, ShadowGNN, which processes schemas at abstract and semantic levels.
On the challenging Text-to-Spider benchmark, empirical results show that ShadowGNN outperforms state-of-the-art models.
arXiv Detail & Related papers (2021-04-10T05:48:28Z) - Bridging Textual and Tabular Data for Cross-Domain Text-to-SQL Semantic
Parsing [110.97778888305506]
BRIDGE represents the question and DB schema in a tagged sequence where a subset of the fields are augmented with cell values mentioned in the question.
BRIDGE attained state-of-the-art performance on popular cross-DB text-to- relational benchmarks.
Our analysis shows that BRIDGE effectively captures the desired cross-modal dependencies and has the potential to generalize to more text-DB related tasks.
arXiv Detail & Related papers (2020-12-23T12:33:52Z) - IGSQL: Database Schema Interaction Graph Based Neural Model for
Context-Dependent Text-to-SQL Generation [61.09660709356527]
We propose a database schema interaction graph encoder to utilize historicalal information of database schema items.
We evaluate our model on the benchmark SParC and Co datasets.
arXiv Detail & Related papers (2020-11-11T12:56:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.