Extractive Schema Linking for Text-to-SQL
- URL: http://arxiv.org/abs/2501.17174v1
- Date: Thu, 23 Jan 2025 19:57:08 GMT
- Title: Extractive Schema Linking for Text-to-SQL
- Authors: Michael Glass, Mustafa Eyceoz, Dharmashankar Subramanian, Gaetano Rossiello, Long Vu, Alfio Gliozzo,
- Abstract summary: Text-to-one is emerging as a practical interface for real world databases.
We introduce a new approach to adapt decoder-only LLMs to schema linking.
- Score: 17.757832644216446
- License:
- Abstract: Text-to-SQL is emerging as a practical interface for real world databases. The dominant paradigm for Text-to-SQL is cross-database or schema-independent, supporting application schemas unseen during training. The schema of a database defines the tables, columns, column types and foreign key connections between tables. Real world schemas can be large, containing hundreds of columns, but for any particular query only a small fraction will be relevant. Placing the entire schema in the prompt for an LLM can be impossible for models with smaller token windows and expensive even when the context window is large enough to allow it. Even apart from computational considerations, the accuracy of the model can be improved by focusing the SQL generation on only the relevant portion of the database. Schema linking identifies the portion of the database schema useful for the question. Previous work on schema linking has used graph neural networks, generative LLMs, and cross encoder classifiers. We introduce a new approach to adapt decoder-only LLMs to schema linking that is both computationally more efficient and more accurate than the generative approach. Additionally our extractive approach permits fine-grained control over the precision-recall trade-off for schema linking.
Related papers
- PSM-SQL: Progressive Schema Learning with Multi-granularity Semantics for Text-to-SQL [8.416319689644556]
It is challenging to convert tasks due to the vast number of database schemas with redundancy.
We propose a progressive schema linking with multi-granularity semantics (PSM-)
PSM- learns the schema semantics at the column, table, and database levels.
arXiv Detail & Related papers (2025-02-07T08:31:57Z) - RSL-SQL: Robust Schema Linking in Text-to-SQL Generation [51.00761167842468]
We propose a novel framework called RSL- that combines bidirectional schema linking, contextual information augmentation, binary selection strategy, and multi-turn self-correction.
benchmarks demonstrate that our approach achieves SOTA execution accuracy among open-source solutions, with 67.2% on BIRD and 87.9% on GPT-4ocorrection.
Our approach outperforms a series of GPT-4 based Text-to-Seek systems when adopting DeepSeek (much cheaper) with same intact prompts.
arXiv Detail & Related papers (2024-10-31T16:22:26Z) - The Death of Schema Linking? Text-to-SQL in the Age of Well-Reasoned Language Models [0.9149661171430259]
We revisit schema linking when using the latest generation of large language models (LLMs)
We find empirically that newer models are adept at utilizing relevant schema elements during generation even in the presence of large numbers of irrelevant ones.
Instead of filtering contextual information, we highlight techniques such as augmentation, selection, and correction, and adopt them to improve the accuracy of our Text-to-BIRD pipeline.
arXiv Detail & Related papers (2024-08-14T17:59:04Z) - RB-SQL: A Retrieval-based LLM Framework for Text-to-SQL [48.516004807486745]
Large language models (LLMs) with in-context learning have significantly improved the performance of text-to- task.
We propose RB-, a novel retrieval-based framework for in-context prompt engineering.
Experiment results demonstrate that our model achieves better performance than several competitive baselines on public datasets BIRD and Spider.
arXiv Detail & Related papers (2024-07-11T08:19:58Z) - SQL-to-Schema Enhances Schema Linking in Text-to-SQL [15.6857201570992]
In text-to-speech methods, there is a need to filter out unnecessary tables and columns.
Previous approaches have involved sorting tables and columns based on their relevance to the question.
We propose an inventive schema linking method in two steps.
arXiv Detail & Related papers (2024-05-15T12:22:48Z) - Schema-Aware Multi-Task Learning for Complex Text-to-SQL [4.913409359995421]
We present a schema-aware multi-task learning framework (named MT) for complicatedsql queries.
Specifically, we design a schema linking discriminator module to distinguish the valid question-schema linkings.
On the decoder side, we define 6-type relationships to describe the connections between tables and columns.
arXiv Detail & Related papers (2024-03-09T01:13:37Z) - Relational Deep Learning: Graph Representation Learning on Relational
Databases [69.7008152388055]
We introduce an end-to-end representation approach to learn on data laid out across multiple tables.
Message Passing Graph Neural Networks can then automatically learn across the graph to extract representations that leverage all data input.
arXiv Detail & Related papers (2023-12-07T18:51:41Z) - CRUSH4SQL: Collective Retrieval Using Schema Hallucination For Text2SQL [47.14954737590405]
Existing text-to-text generators require the entire schema to be encoded with user text.
Standard dense retrieval techniques are inadequate for schema subsetting a large structured database.
We introduce three benchmarks for schema subsetting on large databases.
arXiv Detail & Related papers (2023-11-02T12:13:52Z) - Semantic Enhanced Text-to-SQL Parsing via Iteratively Learning Schema
Linking Graph [6.13728903057727]
The generalizability to new databases is of vital importance to Text-to- systems which aim to parse human utterances intosql statements.
In this paper, we propose a framework named IS ESL to iteratively build a enhanced semantic schema-linking graph between question tokens and database schemas.
Extensive experiments on three benchmarks demonstrate that IS ESL could consistently outperform the baselines and further investigations show its generalizability and robustness.
arXiv Detail & Related papers (2022-08-08T03:59:33Z) - Proton: Probing Schema Linking Information from Pre-trained Language
Models for Text-to-SQL Parsing [66.55478402233399]
We propose a framework to elicit relational structures via a probing procedure based on Poincar'e distance metric.
Compared with commonly-used rule-based methods for schema linking, we found that probing relations can robustly capture semantic correspondences.
Our framework sets new state-of-the-art performance on three benchmarks.
arXiv Detail & Related papers (2022-06-28T14:05:25Z) - IGSQL: Database Schema Interaction Graph Based Neural Model for
Context-Dependent Text-to-SQL Generation [61.09660709356527]
We propose a database schema interaction graph encoder to utilize historicalal information of database schema items.
We evaluate our model on the benchmark SParC and Co datasets.
arXiv Detail & Related papers (2020-11-11T12:56:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.