Pretrained-Guided Conditional Diffusion Models for Microbiome Data Analysis
- URL: http://arxiv.org/abs/2408.07709v1
- Date: Sat, 10 Aug 2024 01:54:06 GMT
- Title: Pretrained-Guided Conditional Diffusion Models for Microbiome Data Analysis
- Authors: Xinyuan Shi, Fangfang Zhu, Wenwen Min,
- Abstract summary: We introduce mbVDiT, a novel pre-trained conditional diffusion model for microbiome data imputation and denoising.
It uses the unmasked data and patient metadata as conditional guidance for imputating missing values.
It is also uses VAE to integrate the the other public microbiome datasets to enhance model performance.
- Score: 1.433758865948252
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Emerging evidence indicates that human cancers are intricately linked to human microbiomes, forming an inseparable connection. However, due to limited sample sizes and significant data loss during collection for various reasons, some machine learning methods have been proposed to address the issue of missing data. These methods have not fully utilized the known clinical information of patients to enhance the accuracy of data imputation. Therefore, we introduce mbVDiT, a novel pre-trained conditional diffusion model for microbiome data imputation and denoising, which uses the unmasked data and patient metadata as conditional guidance for imputating missing values. It is also uses VAE to integrate the the other public microbiome datasets to enhance model performance. The results on the microbiome datasets from three different cancer types demonstrate the performance of our methods in comparison with existing methods.
Related papers
- Extracting Training Data from Unconditional Diffusion Models [76.85077961718875]
diffusion probabilistic models (DPMs) are being employed as mainstream models for generative artificial intelligence (AI)
We aim to establish a theoretical understanding of memorization in DPMs with 1) a memorization metric for theoretical analysis, 2) an analysis of conditional memorization with informative and random labels, and 3) two better evaluation metrics for measuring memorization.
Based on the theoretical analysis, we propose a novel data extraction method called textbfSurrogate condItional Data Extraction (SIDE) that leverages a trained on generated data as a surrogate condition to extract training data directly from unconditional diffusion models.
arXiv Detail & Related papers (2024-06-18T16:20:12Z) - A Comprehensive Survey on Data Augmentation [55.355273602421384]
Data augmentation is a technique that generates high-quality artificial data by manipulating existing data samples.
Existing literature surveys only focus on a certain type of specific modality data.
We propose a more enlightening taxonomy that encompasses data augmentation techniques for different common data modalities.
arXiv Detail & Related papers (2024-05-15T11:58:08Z) - FORESEE: Multimodal and Multi-view Representation Learning for Robust Prediction of Cancer Survival [3.4686401890974197]
We propose a new end-to-end framework, FORESEE, for robustly predicting patient survival by mining multimodal information.
Cross-fusion transformer effectively utilizes features at the cellular level, tissue level, and tumor heterogeneity level to correlate prognosis.
The hybrid attention encoder (HAE) uses the denoising contextual attention module to obtain the contextual relationship features.
We also propose an asymmetrically masked triplet masked autoencoder to reconstruct lost information within modalities.
arXiv Detail & Related papers (2024-05-13T12:39:08Z) - DF-DM: A foundational process model for multimodal data fusion in the artificial intelligence era [3.2549142515720044]
This paper introduces a new process model for multimodal Data Fusion for Data Mining.
Our model aims to decrease computational costs, complexity, and bias while improving efficiency and reliability.
We demonstrate its efficacy through three use cases: predicting diabetic retinopathy using retinal images and patient metadata, domestic violence prediction employing satellite imagery, internet, and census data, and identifying clinical and demographic features from radiography images and clinical notes.
arXiv Detail & Related papers (2024-04-18T15:52:42Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - Deep neural networks approach to microbial colony detection -- a
comparative analysis [52.77024349608834]
This study investigates the performance of three deep learning approaches for object detection on the AGAR dataset.
The achieved results may serve as a benchmark for future experiments.
arXiv Detail & Related papers (2021-08-23T12:06:00Z) - Medical data wrangling with sequential variational autoencoders [5.9207487081080705]
This paper proposes to model medical data records with heterogeneous data types and bursty missing data using sequential variational autoencoders (VAEs)
We show that Shi-VAE achieves the best performance in terms of using both metrics, with lower computational complexity than the GP-VAE model.
arXiv Detail & Related papers (2021-03-12T10:59:26Z) - Adversarial Sample Enhanced Domain Adaptation: A Case Study on
Predictive Modeling with Electronic Health Records [57.75125067744978]
We propose a data augmentation method to facilitate domain adaptation.
adversarially generated samples are used during domain adaptation.
Results confirm the effectiveness of our method and the generality on different tasks.
arXiv Detail & Related papers (2021-01-13T03:20:20Z) - Mixture Model Framework for Traumatic Brain Injury Prognosis Using
Heterogeneous Clinical and Outcome Data [3.7363119896212478]
We develop a method for modeling large heterogeneous data types relevant to TBI.
The model is trained on a dataset encompassing a variety of data types, including demographics, blood-based biomarkers, and imaging findings.
It is used to stratify patients into distinct groups in an unsupervised learning setting.
arXiv Detail & Related papers (2020-12-22T19:31:03Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z) - DCMD: Distance-based Classification Using Mixture Distributions on
Microbiome Data [10.171660468645603]
We present an innovative approach for distance-based classification using mixture distributions (DCMD)
This approach models the inherent uncertainty in sparse counts by estimating a mixture distribution for the sample data.
Results are compared against a number of existing machine learning and distance-based approaches.
arXiv Detail & Related papers (2020-03-29T23:30:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.