Quantum Rational Transformation Using Linear Combinations of Hamiltonian Simulations
- URL: http://arxiv.org/abs/2408.07742v1
- Date: Wed, 14 Aug 2024 18:00:01 GMT
- Title: Quantum Rational Transformation Using Linear Combinations of Hamiltonian Simulations
- Authors: Yizhi Shen, Niel Van Buggenhout, Daan Camps, Katherine Klymko, Roel Van Beeumen,
- Abstract summary: We introduce effective implementations of rational transformations of a target operator on quantum hardware.
We show that rational transformations can be performed efficiently with Hamiltonian simulations using a linear-combination-of-unitaries (LCU)
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Rational functions are exceptionally powerful tools in scientific computing, yet their abilities to advance quantum algorithms remain largely untapped. In this paper, we introduce effective implementations of rational transformations of a target operator on quantum hardware. By leveraging suitable integral representations of the operator resolvent, we show that rational transformations can be performed efficiently with Hamiltonian simulations using a linear-combination-of-unitaries (LCU). We formulate two complementary LCU approaches, discrete-time and continuous-time LCU, each providing unique strategies to decomposing the exact integral representations of a resolvent. We consider quantum rational transformation for the ubiquitous task of approximating functions of a Hermitian operator, with particular emphasis on the elementary signum function. For illustration, we discuss its application to the ground and excited state problems. Combining rational transformations with observable dynamic mode decomposition (ODMD), our recently developed noise-resilient quantum eigensolver, we design a fully real-time approach for resolving many-body spectra. Our numerical demonstration on spin systems indicates that our real-time framework is compact and achieves accurate estimation of the low-lying energies.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Unified framework for efficiently computable quantum circuits [0.0]
Quantum circuits consisting of Clifford and matchgates are two classes of circuits that are known to be efficiently simulatable on a classical computer.
We introduce a unified framework that shows in a transparent way the special structure that allows these circuits can be efficiently simulatable.
arXiv Detail & Related papers (2024-01-16T08:04:28Z) - Lie-algebraic classical simulations for variational quantum computing [0.755972004983746]
Methods relying on the Lie-algebraic structure of quantum dynamics have received relatively little attention.
We present a framework that we call "$mathfrakg$sim", and showcase their efficient implementation in several paradigmatic variational quantum computing tasks.
Specifically, we perform Lie-algebraic simulations to train and parametrized quantum circuits, design enhanced parameter strategies, solve tasks of quantum circuit synthesis, and train a quantum-phase synthesis.
arXiv Detail & Related papers (2023-08-02T21:08:18Z) - Variational quantum algorithms for scanning the complex spectrum of
non-Hermitian systems [0.0]
We propose a variational method for solving the non-Hermitian Hamiltonian on a quantum computer.
The energy is set as a parameter in the cost function and can be tuned to obtain the whole spectrum.
Our work suggests an avenue for solving non-Hermitian quantum many-body systems with variational quantum algorithms on near-term noisy quantum computers.
arXiv Detail & Related papers (2023-05-31T12:50:22Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Time-dependent Hamiltonian Simulation of Highly Oscillatory Dynamics and
Superconvergence for Schr\"odinger Equation [2.973326951020451]
We propose a simple quantum algorithm for simulating highly oscillatory quantum dynamics.
To our knowledge, this is the first quantum algorithm that is both insensitive to the rapid changes of the time-dependent Hamiltonian and exhibits commutator scaling.
For the simulation of the Schr"odinger equation, our method exhibits superconvergence and achieves a surprising second order convergence rate.
arXiv Detail & Related papers (2021-11-04T18:50:36Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Fixed Depth Hamiltonian Simulation via Cartan Decomposition [59.20417091220753]
We present a constructive algorithm for generating quantum circuits with time-independent depth.
We highlight our algorithm for special classes of models, including Anderson localization in one dimensional transverse field XY model.
In addition to providing exact circuits for a broad set of spin and fermionic models, our algorithm provides broad analytic and numerical insight into optimal Hamiltonian simulations.
arXiv Detail & Related papers (2021-04-01T19:06:00Z) - Quantum Markov Chain Monte Carlo with Digital Dissipative Dynamics on
Quantum Computers [52.77024349608834]
We develop a digital quantum algorithm that simulates interaction with an environment using a small number of ancilla qubits.
We evaluate the algorithm by simulating thermal states of the transverse Ising model.
arXiv Detail & Related papers (2021-03-04T18:21:00Z) - Autoregressive Transformer Neural Network for Simulating Open Quantum Systems via a Probabilistic Formulation [5.668795025564699]
We present an approach for tackling open quantum system dynamics.
We compactly represent quantum states with autoregressive transformer neural networks.
Efficient algorithms have been developed to simulate the dynamics of the Liouvillian superoperator.
arXiv Detail & Related papers (2020-09-11T18:00:00Z) - Method of spectral Green functions in driven open quantum dynamics [77.34726150561087]
A novel method based on spectral Green functions is presented for the simulation of driven open quantum dynamics.
The formalism shows remarkable analogies to the use of Green functions in quantum field theory.
The method dramatically reduces computational cost compared with simulations based on solving the full master equation.
arXiv Detail & Related papers (2020-06-04T09:41:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.