Variational quantum algorithms for scanning the complex spectrum of
non-Hermitian systems
- URL: http://arxiv.org/abs/2305.19807v2
- Date: Tue, 23 Jan 2024 14:47:45 GMT
- Title: Variational quantum algorithms for scanning the complex spectrum of
non-Hermitian systems
- Authors: Xu-Dan Xie, Zheng-Yuan Xue and Dan-Bo Zhang
- Abstract summary: We propose a variational method for solving the non-Hermitian Hamiltonian on a quantum computer.
The energy is set as a parameter in the cost function and can be tuned to obtain the whole spectrum.
Our work suggests an avenue for solving non-Hermitian quantum many-body systems with variational quantum algorithms on near-term noisy quantum computers.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Solving non-Hermitian quantum many-body systems on a quantum computer by
minimizing the variational energy is challenging as the energy can be complex.
Here, based on energy variance, we propose a variational method for solving the
non-Hermitian Hamiltonian, as zero variance can naturally determine the
eigenvalues and the associated left and right eigenstates. Moreover, the energy
is set as a parameter in the cost function and can be tuned to obtain the whole
spectrum, where each eigenstate can be efficiently obtained using a two-step
optimization scheme. Through numerical simulations, we demonstrate the
algorithm for preparing the left and right eigenstates, verifying the
biorthogonal relations, as well as evaluating the observables. We also
investigate the impact of quantum noise on our algorithm and show that its
performance can be largely improved using error mitigation techniques.
Therefore, our work suggests an avenue for solving non-Hermitian quantum
many-body systems with variational quantum algorithms on near-term noisy
quantum computers.
Related papers
- Benchmarking Variational Quantum Eigensolvers for Entanglement Detection in Many-Body Hamiltonian Ground States [37.69303106863453]
Variational quantum algorithms (VQAs) have emerged in recent years as a promise to obtain quantum advantage.
We use a specific class of VQA named variational quantum eigensolvers (VQEs) to benchmark them at entanglement witnessing and entangled ground state detection.
Quantum circuits whose structure is inspired by the Hamiltonian interactions presented better results on cost function estimation than problem-agnostic circuits.
arXiv Detail & Related papers (2024-07-05T12:06:40Z) - Evaluation of phase shifts for non-relativistic elastic scattering using quantum computers [39.58317527488534]
This work reports the development of an algorithm that makes it possible to obtain phase shifts for generic non-relativistic elastic scattering processes on a quantum computer.
arXiv Detail & Related papers (2024-07-04T21:11:05Z) - Bias-field digitized counterdiabatic quantum optimization [39.58317527488534]
We call this protocol bias-field digitizeddiabatic quantum optimization (BF-DCQO)
Our purely quantum approach eliminates the dependency on classical variational quantum algorithms.
It achieves scaling improvements in ground state success probabilities, increasing by up to two orders of magnitude.
arXiv Detail & Related papers (2024-05-22T18:11:42Z) - Full Band Structure Calculation of Semiconducting Materials on a Noisy Quantum Processor [2.6327434138210095]
We propose the Reduced Quantum Equation-of-Motion method to find the entire energy spectrum of a quantum system.
We analyse the performance of our method on two noise models and calculate the excitation energies of a bulk Silicon and Gallium Arsenide using our method on an IBM quantum processor.
arXiv Detail & Related papers (2024-05-15T06:35:39Z) - Variational-quantum-eigensolver-inspired optimization for spin-chain work extraction [39.58317527488534]
Energy extraction from quantum sources is a key task to develop new quantum devices such as quantum batteries.
One of the main issues to fully extract energy from the quantum source is the assumption that any unitary operation can be done on the system.
We propose an approach to optimize the extractable energy inspired by the variational quantum eigensolver (VQE) algorithm.
arXiv Detail & Related papers (2023-10-11T15:59:54Z) - Mitigating Quantum Gate Errors for Variational Eigensolvers Using Hardware-Inspired Zero-Noise Extrapolation [0.0]
We develop a recipe for mitigating quantum gate errors for variational algorithms using zero-noise extrapolation.
We utilize the fact that gate errors in a physical quantum device are distributed inhomogeneously over different qubits and qubit pairs.
We find that the estimated energy in the variational approach is approximately linear with respect to the circuit error sum.
arXiv Detail & Related papers (2023-07-20T18:00:03Z) - Variational determination of arbitrarily many eigenpairs in one quantum
circuit [8.118991737495524]
A variational quantum eigensolver (VQE) was first introduced for computing ground states.
We propose a new algorithm to determine many low energy eigenstates simultaneously.
Our algorithm reduces significantly the complexity of circuits and the readout errors.
arXiv Detail & Related papers (2022-06-22T13:01:37Z) - Adiabatic quantum computing with parameterized quantum circuits [0.0]
We propose a discrete version of adiabatic quantum computing that can be implemented in a near-term device.
We compare our proposed algorithm with the Variational Quantum Eigensolver on two classical optimization problems.
arXiv Detail & Related papers (2022-06-09T09:31:57Z) - Numerical Simulations of Noisy Quantum Circuits for Computational
Chemistry [51.827942608832025]
Near-term quantum computers can calculate the ground-state properties of small molecules.
We show how the structure of the computational ansatz as well as the errors induced by device noise affect the calculation.
arXiv Detail & Related papers (2021-12-31T16:33:10Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Adaptive variational quantum eigensolvers for highly excited states [4.038971004196936]
Highly excited states of quantum many-body systems are central objects in the study of quantum dynamics and thermalization.
We propose an adaptive variational algorithm, adaptive VQE-X, that self-generates a variational ansatz for arbitrary eigenstates of a many-body Hamiltonian $H$.
arXiv Detail & Related papers (2021-04-26T15:03:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.