Using linear and nonlinear entanglement witnesses to generate and detect bound entangled states on an IBM quantum processor
- URL: http://arxiv.org/abs/2408.07769v1
- Date: Wed, 14 Aug 2024 18:41:38 GMT
- Title: Using linear and nonlinear entanglement witnesses to generate and detect bound entangled states on an IBM quantum processor
- Authors: Vaishali Gulati, Gayatri Singh, Kavita Dorai,
- Abstract summary: We investigate bound entanglement in three-qubit mixed states diagonal in the Greenberger-Horne-Zeilinger basis.
Entanglement in these states is detected using entanglement witnesses and the analysis focuses on states exhibiting positive partial transpose (PPT)
We propose a general quantum circuit for generating a three-qubit GHZ diagonal mixed state using a six-qubit pure state on the IBM quantum processor.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We investigate bound entanglement in three-qubit mixed states which are diagonal in the Greenberger-Horne-Zeilinger (GHZ) basis. Entanglement in these states is detected using entanglement witnesses and the analysis focuses on states exhibiting positive partial transpose (PPT). We then compare the detection capabilities of optimal linear and nonlinear entanglement witnesses. In theory, both linear and nonlinear witnesses produce non-negative values for separable states and negative values for some entangled GHZ diagonal states with PPT, indicating the presence of entanglement. Our experimental results reveal that in cases where linear entanglement witnesses fail to detect entanglement, nonlinear witnesses are consistently able to identify its presence. Optimal linear and nonlinear witnesses were generated on an IBM quantum computer and their performance was evaluated using two bound entangled states (Kay and Kye states) from the literature, and randomly generated entangled states in the GHZ diagonal form. Additionally, we propose a general quantum circuit for generating a three-qubit GHZ diagonal mixed state using a six-qubit pure state on the IBM quantum processor. We experimentally implemented the circuit to obtain expectation values for three-qubit mixed states and compute the corresponding entanglement witnesses.
Related papers
- Measurement-Device-Independent Detection of Beyond-Quantum State [53.64687146666141]
We propose a measurement-device-independent (MDI) test for beyond-quantum state detection.
We discuss the importance of tomographic completeness of the input sets to the detection.
arXiv Detail & Related papers (2023-12-11T06:40:13Z) - Bound entangled Bell diagonal states of unequal local dimensions, and
their witnesses [0.0]
Bell diagonal states constitute a well-studied family of bipartite quantum states.
We extend the family of entanglement criteria of Sarbicki et al. to non-Hermitian operator bases to construct entanglement witnesses for the class of generalized Bell diagonal states.
arXiv Detail & Related papers (2023-08-21T10:07:16Z) - Experimental limit on non-linear state-dependent terms in quantum theory [110.83289076967895]
We implement blinded measurement and data analysis with three control bit strings.
Control of systematic effects is realized by producing one of the control bit strings with a classical random-bit generator.
Our measurements find no evidence for electromagnetic quantum state-dependent non-linearity.
arXiv Detail & Related papers (2022-04-25T18:00:03Z) - Efficient Bipartite Entanglement Detection Scheme with a Quantum
Adversarial Solver [89.80359585967642]
Proposal reformulates the bipartite entanglement detection as a two-player zero-sum game completed by parameterized quantum circuits.
We experimentally implement our protocol on a linear optical network and exhibit its effectiveness to accomplish the bipartite entanglement detection for 5-qubit quantum pure states and 2-qubit quantum mixed states.
arXiv Detail & Related papers (2022-03-15T09:46:45Z) - Blindly Verifying Unknown Entanglement without State Tomography [0.0]
We identify unknown entanglements with partial information of the state space by developing a nonlinear entanglement witness.
The witness consists of a generalized Greenberger-Horne-Zeilinger-like paradox expressed by Pauli observables, and a nonlinear inequality expressed by density matrix elements.
arXiv Detail & Related papers (2021-11-25T04:29:53Z) - Machine-Learning-Derived Entanglement Witnesses [55.76279816849472]
We show a correspondence between linear support vector machines (SVMs) and entanglement witnesses.
We use this correspondence to generate entanglement witnesses for bipartite and tripartite qubit (and qudit) target entangled states.
arXiv Detail & Related papers (2021-07-05T22:28:02Z) - Practical Verification of Quantum Properties in Quantum Approximate
Optimization Runs [9.661732401406587]
We show that measurements in no more than 3 out of the possible $3N$ bases can reconstruct the single-qubit reduced density matrices and measure the ability to create coherent superpositions.
We demonstrate that a subset of such observables can serve as entanglement witnesses for QAOA-MaxCut states, and further argue that they are especially well tailored for this purpose by defining and computing an entanglement potency metric on witnesses.
arXiv Detail & Related papers (2021-05-04T17:33:15Z) - Witnesses of coherence and dimension from multiphoton
indistinguishability tests [0.0]
We experimentally measure a novel type of coherence witness that uses pairwise state comparisons to identify superpositions in a basis-independent way.
Besides coherence witnesses, we show the measurements also serve as a Hilbert-space dimension witness.
arXiv Detail & Related papers (2021-04-19T12:13:51Z) - Bose-Einstein condensate soliton qubit states for metrological
applications [58.720142291102135]
We propose novel quantum metrology applications with two soliton qubit states.
Phase space analysis, in terms of population imbalance - phase difference variables, is also performed to demonstrate macroscopic quantum self-trapping regimes.
arXiv Detail & Related papers (2020-11-26T09:05:06Z) - Tripartite Genuine Non-Gaussian Entanglement in Three-Mode Spontaneous
Parametric Downconversion [56.12820031986851]
We show that the states generated by a three-mode spontaneous parametric downconversion interaction Hamiltonian possess tripartite entanglement of a different nature to other paradigmatic three-mode entangled states generated by the combination of two-mode SPDCs interactions.
arXiv Detail & Related papers (2020-01-20T10:39:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.