Perspectives: Comparison of Deep Learning Segmentation Models on Biophysical and Biomedical Data
- URL: http://arxiv.org/abs/2408.07786v1
- Date: Wed, 14 Aug 2024 19:49:19 GMT
- Title: Perspectives: Comparison of Deep Learning Segmentation Models on Biophysical and Biomedical Data
- Authors: J Shepard Bryan IV, Meyam Tavakoli, Steve Presse,
- Abstract summary: We compare convolutional neural networks, U-Nets, vision transformers, and vision state space models.
In doing so, we establish criteria for determining optimal conditions under which each model excels.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning based approaches are now widely used across biophysics to help automate a variety of tasks including image segmentation, feature selection, and deconvolution. However, the presence of multiple competing deep learning architectures, each with its own unique advantages and disadvantages, makes it challenging to select an architecture best suited for a specific application. As such, we present a comprehensive comparison of common models. Here, we focus on the task of segmentation assuming the typically small training dataset sizes available from biophysics experiments and compare the following four commonly used architectures: convolutional neural networks, U-Nets, vision transformers, and vision state space models. In doing so, we establish criteria for determining optimal conditions under which each model excels, thereby offering practical guidelines for researchers and practitioners in the field.
Related papers
- Probing Fine-Grained Action Understanding and Cross-View Generalization of Foundation Models [13.972809192907931]
Foundation models (FMs) are large neural networks trained on broad datasets.
Human activity recognition in video has advanced with FMs, driven by competition among different architectures.
This paper empirically evaluates how perspective changes affect different FMs in fine-grained human activity recognition.
arXiv Detail & Related papers (2024-07-22T12:59:57Z) - Benchmarking Retinal Blood Vessel Segmentation Models for Cross-Dataset and Cross-Disease Generalization [5.237321836999284]
We train and evaluate five published models on the publicly available FIVES fundus image dataset.
We find that image quality is a key factor determining segmentation outcomes.
arXiv Detail & Related papers (2024-06-21T09:12:34Z) - Deep Learning-based Bio-Medical Image Segmentation using UNet
Architecture and Transfer Learning [0.0]
We implement UNet architecture from scratch and evaluate its performance on biomedical image datasets.
We show that transferred learning model has better performance in image segmentation than UNet model that is implemented from scratch.
arXiv Detail & Related papers (2023-05-24T07:45:54Z) - Multi-domain learning CNN model for microscopy image classification [3.2835754110596236]
We present a multi-domain learning architecture for the classification of microscopy images.
Unlike previous methods that are computationally intensive, we have developed a compact model, called Mobincep.
It surpasses state-of-the-art results and is robust for limited labeled data.
arXiv Detail & Related papers (2023-04-20T19:32:23Z) - Domain Generalization for Mammographic Image Analysis with Contrastive
Learning [62.25104935889111]
The training of an efficacious deep learning model requires large data with diverse styles and qualities.
A novel contrastive learning is developed to equip the deep learning models with better style generalization capability.
The proposed method has been evaluated extensively and rigorously with mammograms from various vendor style domains and several public datasets.
arXiv Detail & Related papers (2023-04-20T11:40:21Z) - Current Trends in Deep Learning for Earth Observation: An Open-source
Benchmark Arena for Image Classification [7.511257876007757]
'AiTLAS: Benchmark Arena' is an open-source benchmark framework for evaluating state-of-the-art deep learning approaches for image classification.
We present a comprehensive comparative analysis of more than 400 models derived from nine different state-of-the-art architectures.
arXiv Detail & Related papers (2022-07-14T20:18:58Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
We propose a generalized iterative imputation framework for adaptively and automatically configuring column-wise models.
We provide a concrete implementation with out-of-the-box learners, simulators, and interfaces.
arXiv Detail & Related papers (2022-06-15T19:10:35Z) - Model-Based Deep Learning: On the Intersection of Deep Learning and
Optimization [101.32332941117271]
Decision making algorithms are used in a multitude of different applications.
Deep learning approaches that use highly parametric architectures tuned from data without relying on mathematical models are becoming increasingly popular.
Model-based optimization and data-centric deep learning are often considered to be distinct disciplines.
arXiv Detail & Related papers (2022-05-05T13:40:08Z) - Modeling Shared Responses in Neuroimaging Studies through MultiView ICA [94.31804763196116]
Group studies involving large cohorts of subjects are important to draw general conclusions about brain functional organization.
We propose a novel MultiView Independent Component Analysis model for group studies, where data from each subject are modeled as a linear combination of shared independent sources plus noise.
We demonstrate the usefulness of our approach first on fMRI data, where our model demonstrates improved sensitivity in identifying common sources among subjects.
arXiv Detail & Related papers (2020-06-11T17:29:53Z) - Deep Multimodal Neural Architecture Search [178.35131768344246]
We devise a generalized deep multimodal neural architecture search (MMnas) framework for various multimodal learning tasks.
Given multimodal input, we first define a set of primitive operations, and then construct a deep encoder-decoder based unified backbone.
On top of the unified backbone, we attach task-specific heads to tackle different multimodal learning tasks.
arXiv Detail & Related papers (2020-04-25T07:00:32Z) - Image Segmentation Using Deep Learning: A Survey [58.37211170954998]
Image segmentation is a key topic in image processing and computer vision.
There has been a substantial amount of works aimed at developing image segmentation approaches using deep learning models.
arXiv Detail & Related papers (2020-01-15T21:37:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.