論文の概要: Exploration of LLMs, EEG, and behavioral data to measure and support attention and sleep
- arxiv url: http://arxiv.org/abs/2408.07822v1
- Date: Thu, 1 Aug 2024 15:17:54 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-19 03:35:49.355906
- Title: Exploration of LLMs, EEG, and behavioral data to measure and support attention and sleep
- Title(参考訳): 注意と睡眠を計測・支援するためのLCM、脳波、行動データの探索
- Authors: Akane Sano, Judith Amores, Mary Czerwinski,
- Abstract要約: 本研究では,大きな言語モデル(LLM)を用いて注意状態,睡眠ステージ,睡眠の質を推定する。
以上の結果から,LLMは人間のテキスト行動特性に基づいて睡眠の質を推定できることがわかった。
しかし、脳波と活動データに基づいて注意、睡眠ステージ、睡眠品質を検出するには、さらなるトレーニングデータとドメイン固有の知識が必要である。
- 参考スコア(独自算出の注目度): 8.595588089962556
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We explore the application of large language models (LLMs), pre-trained models with massive textual data for detecting and improving these altered states. We investigate the use of LLMs to estimate attention states, sleep stages, and sleep quality and generate sleep improvement suggestions and adaptive guided imagery scripts based on electroencephalogram (EEG) and physical activity data (e.g. waveforms, power spectrogram images, numerical features). Our results show that LLMs can estimate sleep quality based on human textual behavioral features and provide personalized sleep improvement suggestions and guided imagery scripts; however detecting attention, sleep stages, and sleep quality based on EEG and activity data requires further training data and domain-specific knowledge.
- Abstract(参考訳): 大規模言語モデル(LLM)の大規模テキストデータを用いた事前学習モデルの適用について検討した。
脳波(EEG)と身体活動データ(例えば、波形、パワースペクトログラム画像、数値的特徴)に基づいて、注意状態、睡眠ステージ、睡眠品質を推定し、睡眠改善の提案と適応誘導画像スクリプトを生成する。
以上の結果から,LLMは人間のテキストによる行動特徴に基づいて睡眠の質を推定し,個別の睡眠改善提案やガイド画像のスクリプトを提供するが,脳波や活動データに基づく注意・睡眠ステージ・睡眠の質の検出には,さらなるトレーニングデータとドメイン固有の知識が必要であることが示唆された。
関連論文リスト
- Scaling Wearable Foundation Models [54.93979158708164]
センサ基礎モデルのスケーリング特性を計算,データ,モデルサイズにわたって検討する。
最大4000万時間分の心拍数、心拍変動、心電図活動、加速度計、皮膚温度、および1分間のデータを用いて、私たちはLSMを作成します。
この結果から,LSMのスケーリング法則は,時間とセンサの両面において,計算や外挿などのタスクに対して確立されている。
論文 参考訳(メタデータ) (2024-10-17T15:08:21Z) - Clustering and Data Augmentation to Improve Accuracy of Sleep Assessment and Sleep Individuality Analysis [1.9662978733004597]
本研究の目的は,就寝時の頻繁な動きによる睡眠不足など,エビデンスに基づく評価を提供する機械学習ベースの睡眠評価モデルを構築することである。
睡眠音イベントの抽出,VAEを用いた潜時表現の抽出,GMMによるクラスタリング,主観的睡眠評価のためのLSTMトレーニングは94.8%の精度で睡眠満足度を識別した。
論文 参考訳(メタデータ) (2024-04-16T05:56:41Z) - LLMvsSmall Model? Large Language Model Based Text Augmentation Enhanced
Personality Detection Model [58.887561071010985]
パーソナリティ検出は、ソーシャルメディア投稿に根ざした性格特性を検出することを目的としている。
既存のほとんどのメソッドは、事前訓練された言語モデルを微調整することで、ポスト機能を直接学習する。
本稿では,大規模言語モデル (LLM) に基づくテキスト拡張強化人格検出モデルを提案する。
論文 参考訳(メタデータ) (2024-03-12T12:10:18Z) - Domain Invariant Representation Learning and Sleep Dynamics Modeling for
Automatic Sleep Staging [6.86283473936335]
ニューラルネットワークに基づく睡眠ステージングモデルDREAMを提案し,生理的信号とモデル睡眠ダイナミクスから領域一般化表現を学習する。
DREAMは、様々な被験者の睡眠信号から睡眠関連および被写体不変表現を学習し、シーケンシャル信号セグメントと睡眠ステージ間の相互作用を捉えて睡眠ダイナミクスをモデル化する。
睡眠ステージ予測実験,ケーススタディ,ラベルなしデータの使用,不確実性など,DREAMの優位性を示すための総合的な実証的研究を行った。
論文 参考訳(メタデータ) (2023-12-06T00:28:08Z) - Convolutional Monge Mapping Normalization for learning on sleep data [63.22081662149488]
我々は、CMMN(Convolutional Monge Mapping Normalization)と呼ばれる新しい手法を提案する。
CMMNは、そのパワースペクトル密度(PSD)をトレーニングデータに基づいて推定されるワッサーシュタインバリセンタに適応させるために、信号をフィルタリングする。
睡眠脳波データに関する数値実験により、CMMNはニューラルネットワークアーキテクチャから独立して、顕著で一貫したパフォーマンス向上をもたらすことが示された。
論文 参考訳(メタデータ) (2023-05-30T08:24:01Z) - Vision-Language Modelling For Radiological Imaging and Reports In The
Low Data Regime [70.04389979779195]
本稿では,視覚および言語入力を共通空間に埋め込んだ医用視覚言語モデル(VLM)について検討する。
本稿では,新しい画像領域やテキスト領域への汎用事前学習モデルの適用など,低データ性能向上のためのいくつかの候補手法について検討する。
テキスト・ツー・イメージ検索をベンチマークとして,2つの胸部X線および放射線学的報告を用いた可変サイズのトレーニングデータセットを用いて,これらの手法の性能評価を行った。
論文 参考訳(メタデータ) (2023-03-30T18:20:00Z) - Sleep Model -- A Sequence Model for Predicting the Next Sleep Stage [18.059360820527687]
単チャンネル脳波(EEG)、脳電図(EOG)、筋電図(EMG)、心電図(ECG)などの単純なセンサーを用いた睡眠段階分類が注目されている。
本研究では、次の睡眠段階を予測する睡眠モデルを提案し、睡眠分類精度を向上させるために使用した。
論文 参考訳(メタデータ) (2023-02-17T07:37:54Z) - Sleep Activity Recognition and Characterization from Multi-Source
Passively Sensed Data [67.60224656603823]
睡眠活動認識法は、被験者の睡眠覚醒サイクルを評価し、監視し、特徴づけ、行動の変化を検出する指標を提供することができる。
本稿では,スマートフォンから受動的に知覚されたデータを連続的に操作して,睡眠の特徴を識別し,重要な睡眠エピソードを識別する一般的な方法を提案する。
これらの装置は、その用途により、連続的で客観的で非侵襲的な方法で被験者の生体リズムをプロファイルするための優れた代替データ源となっている。
論文 参考訳(メタデータ) (2023-01-17T15:18:45Z) - Heterogeneous Hidden Markov Models for Sleep Activity Recognition from
Multi-Source Passively Sensed Data [67.60224656603823]
精神科患者の受動的活動監視は、リアルタイムでの行動変化を検出するために不可欠である。
睡眠行動認識は、患者の活動サイクルを表現する行動マーカーである。
スマートフォンから受動的に検出されたデータは、患者の生体リズムに優れた代替手段である。
論文 参考訳(メタデータ) (2022-11-08T17:29:40Z) - TransSleep: Transitioning-aware Attention-based Deep Neural Network for
Sleep Staging [2.105172041656126]
本稿では,局所的な時間的特徴を捉えた新しいディープニューラルネットワーク構造であるTransSleepを提案する。
その結果,TransSleepは自動睡眠ステージングにおいて有望な性能を発揮することがわかった。
論文 参考訳(メタデータ) (2022-03-22T08:55:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。