論文の概要: CarbonClipper: Optimal Algorithms for Carbon-Aware Spatiotemporal Workload Management
- arxiv url: http://arxiv.org/abs/2408.07831v1
- Date: Wed, 14 Aug 2024 22:08:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-16 15:28:57.486847
- Title: CarbonClipper: Optimal Algorithms for Carbon-Aware Spatiotemporal Workload Management
- Title(参考訳): CarbonClipper: 時空間負荷管理のための最適アルゴリズム
- Authors: Adam Lechowicz, Nicolas Christianson, Bo Sun, Noman Bashir, Mohammad Hajiesmaili, Adam Wierman, Prashant Shenoy,
- Abstract要約: 炭素を意識したワークロード管理は、データセンターの環境への影響の増大に対処しようとしている。
MathsfSOAD$は、オンラインアルゴリズムにおける一般的なメトリクスと期限制約を組み合わせたオープンな問題を公式化する。
rm Cscriptsize ARCscriptsize LIPPER$は、予測の利点を生かした学習強化アルゴリズムである。
- 参考スコア(独自算出の注目度): 11.029788598491077
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study carbon-aware spatiotemporal workload management, which seeks to address the growing environmental impact of data centers. We formalize this as an online problem called spatiotemporal online allocation with deadline constraints ($\mathsf{SOAD}$), in which an online player completes a workload (e.g., a batch compute job) by moving and scheduling the workload across a network subject to a deadline $T$. At each time step, a service cost function is revealed, representing, e.g., the carbon intensity of servicing a workload at each location, and the player must irrevocably decide the current allocation. Furthermore, whenever the player moves the allocation, it incurs a movement cost defined by a metric space $(X,d)$ that captures, e.g., the overhead of migrating a compute job. $\mathsf{SOAD}$ formalizes the open problem of combining general metrics and deadline constraints in the online algorithms literature, unifying problems such as metrical task systems and online search. We propose a competitive algorithm for $\mathsf{SOAD}$ along with a matching lower bound that proves it is optimal. Our main algorithm, ${\rm C{\scriptsize ARBON}C{\scriptsize LIPPER}}$, is a learning-augmented algorithm that takes advantage of predictions (e.g., carbon intensity forecasts) and achieves an optimal consistency-robustness trade-off. We evaluate our proposed algorithms for carbon-aware spatiotemporal workload management on a simulated global data center network, showing that ${\rm C{\scriptsize ARBON}C{\scriptsize LIPPER}}$ significantly improves performance compared to baseline methods and delivers meaningful carbon reductions.
- Abstract(参考訳): 我々は,データセンターの環境への影響の増大に対処すべく,炭素を意識した時空間負荷管理について検討する。
私たちはこれを、期限制約付き時空間オンラインアロケーション($\mathsf{SOAD}$)と呼ばれるオンライン問題として形式化します。
各タイムステップで、例えば、各場所でワークロードをサービスする炭素強度を表すサービスコスト関数が明らかにされ、プレーヤは、現在の割り当てを不当に決定しなければならない。
さらに、プレイヤーがアロケーションを動かすと、計算ジョブを移動させるオーバーヘッドをキャプチャするメトリックスペース$(X,d)$によって定義された移動コストが発生する。
$\mathsf{SOAD}$は、オンラインアルゴリズムの文献における一般的なメトリクスと期限制約を組み合わせたオープンな問題を公式化し、メトリックタスクシステムやオンライン検索のような問題を統一する。
我々は、$\mathsf{SOAD}$に対する競合アルゴリズムと、それが最適であることを証明した一致した下界を提案する。
主なアルゴリズムである${\rm C{\scriptsize ARBON}C{\scriptsize LIPPER}}$は、予測(例えば炭素強度の予測)を活用し、最適整合性のトレードオフを実現する学習拡張アルゴリズムである。
シミュレーションされたグローバルデータセンターネットワーク上での炭素を意識した時空間負荷管理のためのアルゴリズムを評価したところ、${\rm C{\scriptsize ARBON}C{\scriptsize LIPPER}}$はベースライン法と比較して性能を著しく向上し、有意義な炭素削減を実現していることがわかった。
関連論文リスト
- Communication Efficient Decentralization for Smoothed Online Convex Optimization [9.449153668916098]
マルチエージェントSmoothed Online Convex Optimization(SOCO)問題について検討し,通信グラフを通してN$エージェントが対話する。
各ラウンドにおいて、各エージェント$i$は、オンラインの方法で、強い凸打撃コスト関数$fi_t$を受け取る。
通信グラフが時間とともに任意かつ適応的に変化する場合でも,我々の結果は維持される。
論文 参考訳(メタデータ) (2024-11-13T05:59:04Z) - LACS: Learning-Augmented Algorithms for Carbon-Aware Resource Scaling with Uncertain Demand [1.423958951481749]
本稿では,未知の作業時間(OCSU)を用いたオンラインCO_2-Awareリソーススケーリング問題について検討する。
我々は,論理的に堅牢な学習拡張アルゴリズムであるLACSを提案し,OCSUを解く。
LACSは、納期を意識した炭素に依存しない作業と比較して、炭素フットプリントの32%の削減を実現している。
論文 参考訳(メタデータ) (2024-03-29T04:54:22Z) - A Schedule of Duties in the Cloud Space Using a Modified Salp Swarm
Algorithm [0.0]
クラウド領域で最も重要なNPハード問題のひとつはスケジューリングです。
Salp Swarm Algorithm (SSA)と呼ばれる集団知能アルゴリズムの1つが拡張され、改良され、適用された。
その結果,本アルゴリズムは一般に他のアルゴリズムよりも高い性能を示した。
論文 参考訳(メタデータ) (2023-09-18T02:48:41Z) - Efficient Methods for Non-stationary Online Learning [67.3300478545554]
本稿では, 動的後悔と適応的後悔を最適化する効率的な手法を提案し, ラウンド当たりの投影回数を$mathcalO(log T)$から$ $1$まで削減した。
本手法は,パラメータフリーオンライン学習において開発された還元機構を基礎として,非定常オンライン手法に非自明なツイストを必要とする。
論文 参考訳(メタデータ) (2023-09-16T07:30:12Z) - Movement Penalized Bayesian Optimization with Application to Wind Energy
Systems [84.7485307269572]
文脈ベイズ最適化(CBO)は、与えられた側情報を逐次決定する強力なフレームワークである。
この設定では、学習者は各ラウンドでコンテキスト(天気条件など)を受け取り、アクション(タービンパラメータなど)を選択する必要がある。
標準的なアルゴリズムは、すべてのラウンドで意思決定を切り替えるコストを前提としませんが、多くの実用的なアプリケーションでは、このような変更に関連するコストが最小化されるべきです。
論文 参考訳(メタデータ) (2022-10-14T20:19:32Z) - Communication-Efficient Adam-Type Algorithms for Distributed Data Mining [93.50424502011626]
我々はスケッチを利用した新しい分散Adam型アルゴリズムのクラス(例:SketchedAMSGrad)を提案する。
我々の新しいアルゴリズムは、反復毎に$O(frac1sqrtnT + frac1(k/d)2 T)$の高速収束率を$O(k log(d))$の通信コストで達成する。
論文 参考訳(メタデータ) (2022-10-14T01:42:05Z) - Breaking the Linear Iteration Cost Barrier for Some Well-known
Conditional Gradient Methods Using MaxIP Data-structures [49.73889315176884]
条件勾配法(CGM)は現代の機械学習で広く使われている。
ほとんどの取り組みは、全体の実行時間を短縮する手段として、イテレーションの数を減らすことに重点を置いています。
本稿では,多くの基本最適化アルゴリズムに対して,イテレーション毎のコストがパラメータ数にサブ線形である最初のアルゴリズムを示す。
論文 参考訳(メタデータ) (2021-11-30T05:40:14Z) - Minimax Optimization with Smooth Algorithmic Adversaries [59.47122537182611]
対戦相手が展開するスムーズなアルゴリズムに対して,Min-playerの新しいアルゴリズムを提案する。
本アルゴリズムは,制限周期のない単調進行を保証し,適切な勾配上昇数を求める。
論文 参考訳(メタデータ) (2021-06-02T22:03:36Z) - Online Apprenticeship Learning [58.45089581278177]
見習い学習(AL)では、コスト関数にアクセスせずにマルコフ決定プロセス(MDP)が与えられます。
目標は、事前に定義されたコスト関数のセットで専門家のパフォーマンスに一致するポリシーを見つけることです。
ミラー下降型ノンレグレットアルゴリズムを2つ組み合わせることで,OAL問題を効果的に解くことができることを示す。
論文 参考訳(メタデータ) (2021-02-13T12:57:51Z) - APMSqueeze: A Communication Efficient Adam-Preconditioned Momentum SGD
Algorithm [39.110478306078974]
AdamはBERTやImageNetといった多くの重要なタスクをトレーニングするための効率性と正確性を保証する重要な最適化アルゴリズムである。
本稿では,bf ADAM bfプレコンディション付きbf Momentum SGDアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-08-26T02:20:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。