論文の概要: Incremental Structure Discovery of Classification via Sequential Monte Carlo
- arxiv url: http://arxiv.org/abs/2408.07875v1
- Date: Thu, 15 Aug 2024 01:23:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-16 15:19:12.835516
- Title: Incremental Structure Discovery of Classification via Sequential Monte Carlo
- Title(参考訳): シークエンシャルモンテカルロによる分類のインクリメンタルな構造発見
- Authors: Changze Huang, Di Wang,
- Abstract要約: 本稿では,事前知識の少ない複雑なデータの分類モデルを自動的に発見する手法を提案する。
本手法では, カーネルの様々な特徴を, 合成データと実世界のデータに自動的に組み込んで分類することができる。
- 参考スコア(独自算出の注目度): 5.1581069235093295
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Gaussian Processes (GPs) provide a powerful framework for making predictions and understanding uncertainty for classification with kernels and Bayesian non-parametric learning. Building such models typically requires strong prior knowledge to define preselect kernels, which could be ineffective for online applications of classification that sequentially process data because features of data may shift during the process. To alleviate the requirement of prior knowledge used in GPs and learn new features from data that arrive successively, this paper presents a novel method to automatically discover models of classification on complex data with little prior knowledge. Our method adapts a recently proposed technique for GP-based time-series structure discovery, which integrates GPs and Sequential Monte Carlo (SMC). We extend the technique to handle extra latent variables in GP classification, such that our method can effectively and adaptively learn a-priori unknown structures of classification from continuous input. In addition, our method adapts new batch of data with updated structures of models. Our experiments show that our method is able to automatically incorporate various features of kernels on synthesized data and real-world data for classification. In the experiments of real-world data, our method outperforms various classification methods on both online and offline setting achieving a 10\% accuracy improvement on one benchmark.
- Abstract(参考訳): ガウス過程(GP)は、カーネルとベイズ非パラメトリック学習を用いた分類のための予測と不確実性を理解するための強力なフレームワークを提供する。
このようなモデルを構築するには、プリセレクトカーネルを定義するための強い事前知識が必要であるが、これは、データの特徴がプロセス中に変化する可能性があるため、シーケンシャルにデータを処理する分類のオンラインアプリケーションには効果がない可能性がある。
本稿では,GPにおける先行知識の要件を緩和し,連続するデータから新たな特徴を学習するために,事前知識の少ない複雑なデータの分類モデルを自動的に発見する手法を提案する。
本稿では,GPsとSequential Monte Carlo(SMC)を統合したGPに基づく時系列構造探索手法を提案する。
我々はGP分類における余剰潜伏変数を扱うためにこの手法を拡張し、連続的な入力から非プリオリ未知の分類構造を効果的かつ適応的に学習できるようにした。
さらに,本手法は,モデル構造を更新した新しいデータのバッチに適応する。
提案手法は, 合成データと実世界のデータに, カーネルの様々な特徴を自動で組み込んで分類できることを示す。
実世界のデータを用いた実験では,オンラインとオフラインの両方で様々な分類法を上回り,1つのベンチマークで10倍の精度向上を実現している。
関連論文リスト
- UniCell: Universal Cell Nucleus Classification via Prompt Learning [76.11864242047074]
ユニバーサル細胞核分類フレームワーク(UniCell)を提案する。
異なるデータセットドメインから対応する病理画像のカテゴリを均一に予測するために、新しいプロンプト学習機構を採用している。
特に,本フレームワークでは,原子核検出と分類のためのエンドツーエンドアーキテクチャを採用し,フレキシブルな予測ヘッドを用いて様々なデータセットを適応する。
論文 参考訳(メタデータ) (2024-02-20T11:50:27Z) - ProTeCt: Prompt Tuning for Taxonomic Open Set Classification [59.59442518849203]
分類学的オープンセット(TOS)設定では、ほとんどショット適応法はうまくいきません。
本稿では,モデル予測の階層的一貫性を校正する即時チューニング手法を提案する。
次に,階層整合性のための新しいPrompt Tuning(ProTeCt)手法を提案し,ラベル集合の粒度を分類する。
論文 参考訳(メタデータ) (2023-06-04T02:55:25Z) - Automatic learning algorithm selection for classification via
convolutional neural networks [0.0]
本研究の目的は,メタ機能を特定することなく,データ固有の構造を学習することである。
シミュレーションデータセットを用いた実験により, 線形および非線形パターンの同定において, 提案手法がほぼ完璧な性能を発揮することが示された。
論文 参考訳(メタデータ) (2023-05-16T01:57:01Z) - Continual Learning For On-Device Environmental Sound Classification [63.81276321857279]
デバイス上での環境音の分類のための簡易かつ効率的な連続学習法を提案する。
本手法は,サンプルごとの分類の不確実性を測定することにより,トレーニングの履歴データを選択する。
論文 参考訳(メタデータ) (2022-07-15T12:13:04Z) - Making Look-Ahead Active Learning Strategies Feasible with Neural
Tangent Kernels [6.372625755672473]
本稿では,仮説的ラベル付き候補データを用いた再学習に基づく,能動的学習獲得戦略の近似手法を提案する。
通常、これはディープ・ネットワークでは実現できないが、我々はニューラル・タンジェント・カーネルを用いて再トレーニングの結果を近似する。
論文 参考訳(メタデータ) (2022-06-25T06:13:27Z) - Incremental Ensemble Gaussian Processes [53.3291389385672]
本稿では,EGPメタラーナーがGP学習者のインクリメンタルアンサンブル(IE-) GPフレームワークを提案し,それぞれが所定のカーネル辞書に属するユニークなカーネルを持つ。
各GP専門家は、ランダムな特徴ベースの近似を利用してオンライン予測とモデル更新を行い、そのスケーラビリティを生かし、EGPメタラーナーはデータ適応重みを生かし、熟練者ごとの予測を合成する。
新たなIE-GPは、EGPメタラーナーおよび各GP学習者内における構造化力学をモデル化することにより、時間変化関数に対応するように一般化される。
論文 参考訳(メタデータ) (2021-10-13T15:11:25Z) - No Fear of Heterogeneity: Classifier Calibration for Federated Learning
with Non-IID Data [78.69828864672978]
実世界のフェデレーションシステムにおける分類モデルのトレーニングにおける中心的な課題は、非IIDデータによる学習である。
このアルゴリズムは, 近似されたssian混合モデルからサンプリングした仮想表現を用いて分類器を調整する。
実験の結果,CIFAR-10,CIFAR-100,CINIC-10など,一般的なフェデレーション学習ベンチマークにおけるCCVRの現状が示された。
論文 参考訳(メタデータ) (2021-06-09T12:02:29Z) - Few-Shot Incremental Learning with Continually Evolved Classifiers [46.278573301326276]
Few-shot Class-Incremental Learning(FSCIL)は、いくつかのデータポイントから新しい概念を継続的に学習できる機械学習アルゴリズムの設計を目指している。
難点は、新しいクラスからの限られたデータが、重大な過度な問題を引き起こすだけでなく、破滅的な忘れの問題も悪化させることにある。
我々は,適応のための分類器間のコンテキスト情報を伝達するグラフモデルを用いた連続進化型cif(cec)を提案する。
論文 参考訳(メタデータ) (2021-04-07T10:54:51Z) - Learning Compositional Sparse Gaussian Processes with a Shrinkage Prior [26.52863547394537]
本稿では,カーネル選択のスパーシティをホースシュープリアーで処理することにより,カーネル構成を学習するための新しい確率論的アルゴリズムを提案する。
本モデルは,計算時間を大幅に削減した時系列特性をキャプチャし,実世界のデータセット上での競合回帰性能を有する。
論文 参考訳(メタデータ) (2020-12-21T13:41:15Z) - An Online Learning Algorithm for a Neuro-Fuzzy Classifier with
Mixed-Attribute Data [9.061408029414455]
General Fuzzy min-max Neural Network (GFMMNN) は、データ分類のための効率的な神経ファジィシステムの一つである。
本稿ではGFMMNNのための拡張オンライン学習アルゴリズムを提案する。
提案手法は連続的特徴と分類的特徴の両方でデータセットを処理できる。
論文 参考訳(メタデータ) (2020-09-30T13:45:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。