論文の概要: Deep Joint Denoising and Detection for Enhanced Intracellular Particle Analysis
- arxiv url: http://arxiv.org/abs/2408.07903v1
- Date: Thu, 15 Aug 2024 03:13:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-16 15:09:23.234700
- Title: Deep Joint Denoising and Detection for Enhanced Intracellular Particle Analysis
- Title(参考訳): 著明な細胞内粒子分析のためのディープジョイントデノジングと検出
- Authors: Yao Yao, Ihor Smal, Ilya Grigoriev, Anna Akhmanova, Erik Meijering,
- Abstract要約: 本稿では,DENODETと呼ばれる新しいディープニューラルネットワークを提案する。
本手法は, 粒子追跡課題データセットと実際の蛍光顕微鏡画像データについて, 最先端粒子検出法と比較して, 優れた結果が得られる。
- 参考スコア(独自算出の注目度): 8.997702776298091
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reliable analysis of intracellular dynamic processes in time-lapse fluorescence microscopy images requires complete and accurate tracking of all small particles in all time frames of the image sequences. A fundamental first step towards this goal is particle detection. Given the small size of the particles, their detection is greatly affected by image noise. Recent studies have shown that applying image denoising as a preprocessing step indeed improves particle detection and their subsequent tracking. Deep learning based particle detection methods have shown superior results compared to traditional detection methods. However, they do not explicitly aim to remove noise from the images to facilitate detection. Thus we hypothesize that their performance could be further improved. In this paper, we propose a new deep neural network, called DENODET (denoising-detection network), which performs image denoising and particle detection simultaneously. We show that integrative denoising and detection yields more accurate detection results. Our method achieves superior results compared to state-of-the-art particle detection methods on the particle tracking challenge dataset and our own real fluorescence microscopy image data.
- Abstract(参考訳): 時間経過蛍光顕微鏡画像における細胞内の動的過程の信頼性解析には、画像シーケンスの全時間フレームにおける全ての小さな粒子の完全かつ正確な追跡が必要である。
この目標に向けた基本的な第一歩は粒子検出である。
粒子の大きさが小さいと、その検出は画像ノイズに大きく影響を受ける。
近年の研究では、前処理ステップとして画像デノケーションを適用することで、粒子の検出と追跡が実際に改善されることが示されている。
深層学習に基づく粒子検出法は従来の検出法よりも優れた結果を示した。
しかし、検出を容易にするために画像からノイズを取り除くことを明示的に意図していない。
したがって、これらの性能をさらに改善できるという仮説を立てる。
本稿では,DENODET(denoising-detection network)と呼ばれる新しいディープニューラルネットワークを提案する。
積分分解と検出により,より正確な検出結果が得られることを示す。
本手法は, 粒子追跡課題データセットと実際の蛍光顕微鏡画像データについて, 最先端粒子検出法と比較して, 優れた結果が得られる。
関連論文リスト
- AI-based particle track identification in scintillating fibres read out with imaging sensors [1.321203201549798]
本研究では,SPADアレイセンサによって生成された実データから,信号を含むフレームを効率よくフィルタリングし,識別する可変オートエンコーダ(VAE)を提案する。
我々のVAEモデルは、背景雑音から粒子トラックを含むフレームを識別する能力を示した。
論文 参考訳(メタデータ) (2024-10-14T13:59:30Z) - Deep-learning-based decomposition of overlapping-sparse images: application at the vertex of neutrino interactions [2.5521723486759407]
本稿では,深層学習の力を利用して,多次元重なり合うスパース画像中の個々の物体を正確に抽出する手法を提案する。
これは、イメージング検出器から得られるオーバーレイド素粒子を分解した高エネルギー物理学の直接的な応用である。
論文 参考訳(メタデータ) (2023-10-30T16:12:25Z) - Recursive Detection and Analysis of Nanoparticles in Scanning Electron
Microscopy Images [0.0]
本研究では,走査型電子顕微鏡(SEM)画像中のナノ粒子の精密検出と包括的解析を目的とした計算フレームワークを提案する。
このフレームワークはPythonの堅牢な画像処理機能を採用しており、特にOpenCV、SciPy、Scikit-Imageといったライブラリを利用している。
SEMナノ粒子のデータセットから得られた5つの異なるテスト画像から粒子を検出する精度は97%だ。
論文 参考訳(メタデータ) (2023-08-17T02:08:05Z) - Image Denoising and the Generative Accumulation of Photons [63.14988413396991]
我々は,次の光子がどこに到着できるかを予測するために訓練されたネットワークが,実際に最小平均二乗誤差(MMSE)を解くことを示している。
自己監督型認知のための新しい戦略を提案する。
本稿では,画像に少量の光子を反復的にサンプリングし,付加することにより,可能な解の後方からサンプリングする新しい方法を提案する。
論文 参考訳(メタデータ) (2023-07-13T08:03:32Z) - The role of noise in denoising models for anomaly detection in medical
images [62.0532151156057]
病理脳病変は脳画像に多彩な外観を示す。
正規データのみを用いた教師なし異常検出手法が提案されている。
空間分解能の最適化と雑音の大きさの最適化により,異なるモデル学習体制の性能が向上することを示す。
論文 参考訳(メタデータ) (2023-01-19T21:39:38Z) - Physics-based Noise Modeling for Extreme Low-light Photography [63.65570751728917]
CMOS光センサの撮像パイプラインにおけるノイズ統計について検討する。
実雑音構造を正確に特徴付けることのできる包括的ノイズモデルを定式化する。
我々のノイズモデルは、学習に基づく低照度復調アルゴリズムのためのリアルなトレーニングデータを合成するのに利用できる。
論文 参考訳(メタデータ) (2021-08-04T16:36:29Z) - Learning Spatial and Spatio-Temporal Pixel Aggregations for Image and
Video Denoising [104.59305271099967]
ピクセル集計ネットワークを提示し、画像デノイジングのためのピクセルサンプリングと平均戦略を学びます。
時間空間にまたがるサンプル画素をビデオデノナイズするための画素集約ネットワークを開発した。
本手法は,動的シーンにおける大きな動きに起因する誤認問題を解決することができる。
論文 参考訳(メタデータ) (2021-01-26T13:00:46Z) - Improving Blind Spot Denoising for Microscopy [73.94017852757413]
自己監督型認知の質を向上させる新しい方法を提案する。
我々は、クリーンな画像がポイントスプレッド関数(PSF)との畳み込みの結果であり、ニューラルネットワークの最後にこの操作を明示的に含んでいると仮定する。
論文 参考訳(メタデータ) (2020-08-19T13:06:24Z) - Deep Photon Mapping [59.41146655216394]
本稿では,粒子ベースのレンダリングのための新しい深層学習手法を提案する。
我々は、カーネル関数を予測するために新しいディープニューラルネットワークをトレーニングし、シェーディングポイントでの光子寄与を集約する。
我々のネットワークは、個々の光子を光子ごとの特徴にエンコードし、シェーディングポイントの近傍でそれらを集約し、光子ごとの局所的特徴と光子ごとの局所的特徴からカーネル関数を推論する。
論文 参考訳(メタデータ) (2020-04-25T06:59:10Z) - Effective statistical fringe removal algorithm for high-sensitivity
imaging of ultracold atoms [3.4521385239788813]
超低温原子の吸収イメージングのための高度な外周除去アルゴリズムを示す。
少数のサンプル画像を用いて、不要なフリンジパターンを効率的に抑制する。
論文 参考訳(メタデータ) (2020-02-24T03:03:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。