論文の概要: AI-based particle track identification in scintillating fibres read out with imaging sensors
- arxiv url: http://arxiv.org/abs/2410.10519v1
- Date: Mon, 14 Oct 2024 13:59:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-29 21:05:04.674879
- Title: AI-based particle track identification in scintillating fibres read out with imaging sensors
- Title(参考訳): 撮像センサで読み出したシンチラティング繊維中のAIによる粒子トラック同定
- Authors: Noemi Bührer, Saúl Alonso-Monsalve, Matthew Franks, Till Dieminger, Davide Sgalaberna,
- Abstract要約: 本研究では,SPADアレイセンサによって生成された実データから,信号を含むフレームを効率よくフィルタリングし,識別する可変オートエンコーダ(VAE)を提案する。
我々のVAEモデルは、背景雑音から粒子トラックを含むフレームを識別する能力を示した。
- 参考スコア(独自算出の注目度): 1.321203201549798
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents the development and application of an AI-based method for particle track identification using scintillating fibres read out with imaging sensors. We propose a variational autoencoder (VAE) to efficiently filter and identify frames containing signal from the substantial data generated by SPAD array sensors. Our VAE model, trained on purely background frames, demonstrated a high capability to distinguish frames containing particle tracks from background noise. The performance of the VAE-based anomaly detection was validated with experimental data, demonstrating the method's ability to efficiently identify relevant events with rapid processing time, suggesting a solid prospect for deployment as a fast inference tool on hardware for real-time anomaly detection. This work highlights the potential of combining advanced sensor technology with machine learning techniques to enhance particle detection and tracking.
- Abstract(参考訳): 本稿では,画像センサで読み出したシンチラティングファイバーを用いた粒子トラック識別のためのAIベースの手法の開発と応用について述べる。
本研究では,SPADアレイセンサによって生成された実データからの信号を含むフレームを効率よくフィルタリングし,同定する可変オートエンコーダ(VAE)を提案する。
我々のVAEモデルは、背景雑音から粒子トラックを含むフレームを識別する能力を示した。
VAEに基づく異常検出の性能は実験データを用いて検証され、高速な処理時間で関連事象を効率的に識別できることが示され、リアルタイム異常検出のためのハードウェア上での高速な推論ツールとしての展開の可能性が示唆された。
この研究は、高度なセンサー技術と機械学習技術を組み合わせて粒子の検出と追跡を強化する可能性を強調している。
関連論文リスト
- Deep Joint Denoising and Detection for Enhanced Intracellular Particle Analysis [8.997702776298091]
本稿では,DENODETと呼ばれる新しいディープニューラルネットワークを提案する。
本手法は, 粒子追跡課題データセットと実際の蛍光顕微鏡画像データについて, 最先端粒子検出法と比較して, 優れた結果が得られる。
論文 参考訳(メタデータ) (2024-08-15T03:13:53Z) - Multi-Object Tracking based on Imaging Radar 3D Object Detection [0.13499500088995461]
本稿では,古典的追跡アルゴリズムを用いて,周囲の交通参加者を追跡する手法を提案する。
学習に基づく物体検出器はライダーとカメラのデータに適切に対応し、学習に基づく物体検出器は標準のレーダーデータ入力により劣っていることが示されている。
レーダセンサ技術の改良により、レーダの物体検出性能は大幅に改善されたが、レーダ点雲の広さによりライダーセンサに制限されている。
追跡アルゴリズムは、一貫したトラックを生成しながら、限られた検出品質を克服しなければならない。
論文 参考訳(メタデータ) (2024-06-03T05:46:23Z) - What Machine Learning Can Do for Focusing Aerogel Detectors [42.18762603890493]
スーパーチャームタウ工場実験における粒子識別は、集束型エアロゲルリングイメージングチェレンコフ検出器(FARICH)によって提供される。
検出位置の特定は適切な冷却を困難にするため、かなりの数の周囲のバックグラウンドヒットが捕捉される。
本研究では,コンピュータビジョンの機械学習技術に触発された信号ヒットのフィルタリング手法を提案する。
論文 参考訳(メタデータ) (2023-12-05T10:46:16Z) - Joint object detection and re-identification for 3D obstacle
multi-camera systems [47.87501281561605]
本研究は,カメラとライダー情報を用いた物体検出ネットワークに新たな改良を加えたものである。
同じ車両内の隣のカメラにまたがって物体を再識別する作業のために、追加のブランチが組み込まれている。
その結果,従来の非最大抑圧(NMS)技術よりも,この手法が優れていることが示された。
論文 参考訳(メタデータ) (2023-10-09T15:16:35Z) - Multi-Modal Neural Radiance Field for Monocular Dense SLAM with a
Light-Weight ToF Sensor [58.305341034419136]
単眼カメラと軽量ToFセンサを備えた初の高密度SLAMシステムを提案する。
本稿では,RGBカメラと軽量ToFセンサの両方の信号のレンダリングをサポートするマルチモーダル暗黙のシーン表現を提案する。
実験により,本システムは軽量なToFセンサの信号をうまく利用し,競合的な結果が得られることが示された。
論文 参考訳(メタデータ) (2023-08-28T07:56:13Z) - Efficient Real-time Smoke Filtration with 3D LiDAR for Search and Rescue
with Autonomous Heterogeneous Robotic Systems [56.838297900091426]
スモークとダストは、搭載された知覚システムに依存するため、あらゆる移動ロボットプラットフォームの性能に影響を与える。
本稿では,重みと空間情報に基づく新しいモジュラー計算フィルタを提案する。
論文 参考訳(メタデータ) (2023-08-14T16:48:57Z) - Change Detection from Synthetic Aperture Radar Images via Dual Path
Denoising Network [38.78699830610313]
SAR画像変化検出のためのDual Path Denoising Network (DPDNet)を提案する。
我々は,事前分類に関わるラベルノイズをクリーンにするために,ランダムなラベル伝搬を導入する。
また,特徴表現学習のための特徴的パッチ畳み込みを提案する。
論文 参考訳(メタデータ) (2022-03-13T01:51:51Z) - A photosensor employing data-driven binning for ultrafast image
recognition [0.0]
ピクセルビンニング(Pixel binning)は、光学画像の取得と分光において広く用いられる技術である。
ここでは、センサー要素の大部分を1つのスーパーピクセルに組み合わせることで、バイナリの概念を限界まで押し上げる。
与えられたパターン認識タスクに対しては、機械学習アルゴリズムを用いてトレーニングデータから最適な形状を決定する。
論文 参考訳(メタデータ) (2021-11-20T15:38:39Z) - DeepTimeAnomalyViz: A Tool for Visualizing and Post-processing Deep
Learning Anomaly Detection Results for Industrial Time-Series [88.12892448747291]
DeTAVIZ インタフェースは Web ブラウザをベースとした可視化ツールで,特定の問題における DL ベースの異常検出の実現可能性の迅速な探索と評価を行う。
DeTAVIZを使えば、ユーザーは複数のポスト処理オプションを簡単かつ迅速に繰り返し、異なるモデルを比較することができ、選択したメトリックに対して手動で最適化できる。
論文 参考訳(メタデータ) (2021-09-21T10:38:26Z) - A Pedestrian Detection and Tracking Framework for Autonomous Cars:
Efficient Fusion of Camera and LiDAR Data [0.17205106391379021]
本稿では,カメラとLiDARセンサデータを用いた歩行者検出と追跡のための新しい手法を提案する。
検出フェーズは、LiDARストリームを計算的に抽出可能な深度画像に変換し、さらに、歩行者候補を特定するディープニューラルネットワークを開発する。
トラッキングフェーズは、Kalmanフィルタ予測と、シーン内の複数の歩行者を追跡するための光フローアルゴリズムの組み合わせである。
論文 参考訳(メタデータ) (2021-08-27T16:16:01Z) - Signal Processing and Machine Learning Techniques for Terahertz Sensing:
An Overview [89.09270073549182]
テラヘルツ(THz)信号生成と放射法は、無線システムの未来を形作っている。
THz 固有の信号処理技術は、THz 帯域の効率的な利用のために、この THz センシングへの関心を補う必要がある。
本稿では,信号前処理に着目した手法の概要を示す。
また,THz帯で有望な知覚能力を探索し,深層学習の有効性についても検討した。
論文 参考訳(メタデータ) (2021-04-09T01:38:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。