Persistence Image from 3D Medical Image: Superpixel and Optimized Gaussian Coefficient
- URL: http://arxiv.org/abs/2408.07905v1
- Date: Thu, 15 Aug 2024 03:24:00 GMT
- Title: Persistence Image from 3D Medical Image: Superpixel and Optimized Gaussian Coefficient
- Authors: Yanfan Zhu, Yash Singh, Khaled Younis, Shunxing Bao, Yuankai Huo,
- Abstract summary: Topological data analysis (TDA) uncovers crucial properties of objects in medical imaging.
Previous research primarily focused on 2D image analysis, neglecting the comprehensive 3D context.
We propose an innovative 3D TDA approach that incorporates the concept of superpixels to transform 3D medical image features into point cloud data.
- Score: 3.808587330262038
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Topological data analysis (TDA) uncovers crucial properties of objects in medical imaging. Methods based on persistent homology have demonstrated their advantages in capturing topological features that traditional deep learning methods cannot detect in both radiology and pathology. However, previous research primarily focused on 2D image analysis, neglecting the comprehensive 3D context. In this paper, we propose an innovative 3D TDA approach that incorporates the concept of superpixels to transform 3D medical image features into point cloud data. By Utilizing Optimized Gaussian Coefficient, the proposed 3D TDA method, for the first time, efficiently generate holistic Persistence Images for 3D volumetric data. Our 3D TDA method exhibits superior performance on the MedMNist3D dataset when compared to other traditional methods, showcasing its potential effectiveness in modeling 3D persistent homology-based topological analysis when it comes to classification tasks. The source code is publicly available at https://github.com/hrlblab/TopologicalDataAnalysis3D.
Related papers
- FAMOUS: High-Fidelity Monocular 3D Human Digitization Using View Synthesis [51.193297565630886]
The challenge of accurately inferring texture remains, particularly in obscured areas such as the back of a person in frontal-view images.
This limitation in texture prediction largely stems from the scarcity of large-scale and diverse 3D datasets.
We propose leveraging extensive 2D fashion datasets to enhance both texture and shape prediction in 3D human digitization.
arXiv Detail & Related papers (2024-10-13T01:25:05Z) - 3DiffTection: 3D Object Detection with Geometry-Aware Diffusion Features [70.50665869806188]
3DiffTection is a state-of-the-art method for 3D object detection from single images.
We fine-tune a diffusion model to perform novel view synthesis conditioned on a single image.
We further train the model on target data with detection supervision.
arXiv Detail & Related papers (2023-11-07T23:46:41Z) - Improving 3D Imaging with Pre-Trained Perpendicular 2D Diffusion Models [52.529394863331326]
We propose a novel approach using two perpendicular pre-trained 2D diffusion models to solve the 3D inverse problem.
Our method is highly effective for 3D medical image reconstruction tasks, including MRI Z-axis super-resolution, compressed sensing MRI, and sparse-view CT.
arXiv Detail & Related papers (2023-03-15T08:28:06Z) - 3D Matting: A Soft Segmentation Method Applied in Computed Tomography [26.25446145993599]
Three-dimensional (3D) images, such as CT, MRI, and PET, are common in medical imaging applications and important in clinical diagnosis.
Semantic ambiguity is a typical feature of many medical image labels.
In 2D medical images, using soft masks instead of binary masks generated by image matting to characterize lesions can provide rich semantic information.
arXiv Detail & Related papers (2022-09-16T10:18:59Z) - Super Images -- A New 2D Perspective on 3D Medical Imaging Analysis [0.0]
We present a simple yet effective 2D method to handle 3D data while efficiently embedding the 3D knowledge during training.
Our method generates a super-resolution image by stitching slices side by side in the 3D image.
While attaining equal, if not superior, results to 3D networks utilizing only 2D counterparts, the model complexity is reduced by around threefold.
arXiv Detail & Related papers (2022-05-05T09:59:03Z) - Learning Geometry-Guided Depth via Projective Modeling for Monocular 3D Object Detection [70.71934539556916]
We learn geometry-guided depth estimation with projective modeling to advance monocular 3D object detection.
Specifically, a principled geometry formula with projective modeling of 2D and 3D depth predictions in the monocular 3D object detection network is devised.
Our method remarkably improves the detection performance of the state-of-the-art monocular-based method without extra data by 2.80% on the moderate test setting.
arXiv Detail & Related papers (2021-07-29T12:30:39Z) - Comparative Evaluation of 3D and 2D Deep Learning Techniques for
Semantic Segmentation in CT Scans [0.0]
We propose a 3D stack-based deep learning technique for segmenting manifestations of consolidation and ground-glass opacities in 3D Computed Tomography (CT) scans.
We present a comparison based on the segmentation results, the contextual information retained, and the inference time between this 3D technique and a traditional 2D deep learning technique.
The 3D technique results in a 5X reduction in the inference time compared to the 2D technique.
arXiv Detail & Related papers (2021-01-19T13:23:43Z) - Automated Model Design and Benchmarking of 3D Deep Learning Models for
COVID-19 Detection with Chest CT Scans [72.04652116817238]
We propose a differentiable neural architecture search (DNAS) framework to automatically search for the 3D DL models for 3D chest CT scans classification.
We also exploit the Class Activation Mapping (CAM) technique on our models to provide the interpretability of the results.
arXiv Detail & Related papers (2021-01-14T03:45:01Z) - Revisiting 3D Context Modeling with Supervised Pre-training for
Universal Lesion Detection in CT Slices [48.85784310158493]
We propose a Modified Pseudo-3D Feature Pyramid Network (MP3D FPN) to efficiently extract 3D context enhanced 2D features for universal lesion detection in CT slices.
With the novel pre-training method, the proposed MP3D FPN achieves state-of-the-art detection performance on the DeepLesion dataset.
The proposed 3D pre-trained weights can potentially be used to boost the performance of other 3D medical image analysis tasks.
arXiv Detail & Related papers (2020-12-16T07:11:16Z) - 3D Self-Supervised Methods for Medical Imaging [7.65168530693281]
We propose 3D versions for five different self-supervised methods, in the form of proxy tasks.
Our methods facilitate neural network feature learning from unlabeled 3D images, aiming to reduce the required cost for expert annotation.
The developed algorithms are 3D Contrastive Predictive Coding, 3D Rotation prediction, 3D Jigsaw puzzles, Relative 3D patch location, and 3D Exemplar networks.
arXiv Detail & Related papers (2020-06-06T09:56:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.