Adaptive Learning of Consistency and Inconsistency Information for Fake News Detection
- URL: http://arxiv.org/abs/2408.08013v2
- Date: Fri, 16 Aug 2024 09:48:44 GMT
- Title: Adaptive Learning of Consistency and Inconsistency Information for Fake News Detection
- Authors: Aohan Li, Jiaxin Chen, Xin Liao, Dengyong Zhang,
- Abstract summary: We propose an adaptive multi-modal feature fusion network (MFF-Net) to detect fake news.
MFF-Net learns consistency information between modes through a multiple feature fusion module.
It outperforms state-of-the-art methods across three public news datasets derived from real social medias.
- Score: 28.718460312783257
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid advancement of social media platforms has significantly reduced the cost of information dissemination, yet it has also led to a proliferation of fake news, posing a threat to societal trust and credibility. Most of fake news detection research focused on integrating text and image information to represent the consistency of multiple modes in news content, while paying less attention to inconsistent information. Besides, existing methods that leveraged inconsistent information often caused one mode overshadowing another, leading to ineffective use of inconsistent clue. To address these issues, we propose an adaptive multi-modal feature fusion network (MFF-Net). Inspired by human judgment processes for determining truth and falsity in news, MFF-Net focuses on inconsistent parts when news content is generally consistent and consistent parts when it is generally inconsistent. Specifically, MFF-Net extracts semantic and global features from images and texts respectively, and learns consistency information between modes through a multiple feature fusion module. To deal with the problem of modal information being easily masked, we design a single modal feature filtering strategy to capture inconsistent information from corresponding modes separately. Finally, similarity scores are calculated based on global features with adaptive adjustments made to achieve weighted fusion of consistent and inconsistent features. Extensive experimental results demonstrate that MFF-Net outperforms state-of-the-art methods across three public news datasets derived from real social medias.
Related papers
- FineFake: A Knowledge-Enriched Dataset for Fine-Grained Multi-Domain Fake News Detection [54.37159298632628]
FineFake is a multi-domain knowledge-enhanced benchmark for fake news detection.
FineFake encompasses 16,909 data samples spanning six semantic topics and eight platforms.
The entire FineFake project is publicly accessible as an open-source repository.
arXiv Detail & Related papers (2024-03-30T14:39:09Z) - NativE: Multi-modal Knowledge Graph Completion in the Wild [51.80447197290866]
We propose a comprehensive framework NativE to achieve MMKGC in the wild.
NativE proposes a relation-guided dual adaptive fusion module that enables adaptive fusion for any modalities.
We construct a new benchmark called WildKGC with five datasets to evaluate our method.
arXiv Detail & Related papers (2024-03-28T03:04:00Z) - MSynFD: Multi-hop Syntax aware Fake News Detection [27.046529059563863]
Social media platforms have fueled the rapid dissemination of fake news, posing threats to our real-life society.
Existing methods use multimodal data or contextual information to enhance the detection of fake news.
We propose a novel multi-hop syntax aware fake news detection (MSynFD) method, which incorporates complementary syntax information to deal with subtle twists in fake news.
arXiv Detail & Related papers (2024-02-18T05:40:33Z) - From Text to Pixels: A Context-Aware Semantic Synergy Solution for
Infrared and Visible Image Fusion [66.33467192279514]
We introduce a text-guided multi-modality image fusion method that leverages the high-level semantics from textual descriptions to integrate semantics from infrared and visible images.
Our method not only produces visually superior fusion results but also achieves a higher detection mAP over existing methods, achieving state-of-the-art results.
arXiv Detail & Related papers (2023-12-31T08:13:47Z) - Toward Real Text Manipulation Detection: New Dataset and New Solution [58.557504531896704]
High costs associated with professional text manipulation limit the availability of real-world datasets.
We present the Real Text Manipulation dataset, encompassing 14,250 text images.
Our contributions aim to propel advancements in real-world text tampering detection.
arXiv Detail & Related papers (2023-12-12T02:10:16Z) - Inconsistent Matters: A Knowledge-guided Dual-consistency Network for
Multi-modal Rumor Detection [53.48346699224921]
A novel Knowledge-guided Dualconsistency Network is proposed to detect rumors with multimedia contents.
It uses two consistency detectionworks to capture the inconsistency at the cross-modal level and the content-knowledge level simultaneously.
It also enables robust multi-modal representation learning under different missing visual modality conditions.
arXiv Detail & Related papers (2023-06-03T15:32:20Z) - Multi-modal Fake News Detection on Social Media via Multi-grained
Information Fusion [21.042970740577648]
We present a Multi-grained Multi-modal Fusion Network (MMFN) for fake news detection.
Inspired by the multi-grained process of human assessment of news authenticity, we respectively employ two Transformer-based pre-trained models to encode token-level features from text and images.
The multi-modal module fuses fine-grained features, taking into account coarse-grained features encoded by the CLIP encoder.
arXiv Detail & Related papers (2023-04-03T09:13:59Z) - Interpretable Fake News Detection with Topic and Deep Variational Models [2.15242029196761]
We focus on fake news detection using interpretable features and methods.
We have developed a deep probabilistic model that integrates a dense representation of textual news.
Our model achieves comparable performance to state-of-the-art competing models.
arXiv Detail & Related papers (2022-09-04T05:31:00Z) - Image-Specific Information Suppression and Implicit Local Alignment for
Text-based Person Search [61.24539128142504]
Text-based person search (TBPS) is a challenging task that aims to search pedestrian images with the same identity from an image gallery given a query text.
Most existing methods rely on explicitly generated local parts to model fine-grained correspondence between modalities.
We propose an efficient joint Multi-level Alignment Network (MANet) for TBPS, which can learn aligned image/text feature representations between modalities at multiple levels.
arXiv Detail & Related papers (2022-08-30T16:14:18Z) - Multimodal Fake News Detection with Adaptive Unimodal Representation
Aggregation [28.564442206829625]
AURA is a multimodal fake news detection network with adaptive unimodal representation aggregation.
We perform coarse-level fake news detection and cross-modal cosistency learning according to the unimodal and multimodal representations.
Experiments on Weibo and Gossipcop prove that AURA can successfully beat several state-of-the-art FND schemes.
arXiv Detail & Related papers (2022-06-12T14:06:55Z) - Applying Automatic Text Summarization for Fake News Detection [4.2177790395417745]
The distribution of fake news is not a new but a rapidly growing problem.
We present an approach to the problem that combines the power of transformer-based language models.
Our framework, CMTR-BERT, combines multiple text representations and enables the incorporation of contextual information.
arXiv Detail & Related papers (2022-04-04T21:00:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.