SPEED: Scalable Preprocessing of EEG Data for Self-Supervised Learning
- URL: http://arxiv.org/abs/2408.08065v3
- Date: Mon, 23 Sep 2024 10:30:15 GMT
- Title: SPEED: Scalable Preprocessing of EEG Data for Self-Supervised Learning
- Authors: Anders Gjølbye, Lina Skerath, William Lehn-Schiøler, Nicolas Langer, Lars Kai Hansen,
- Abstract summary: We propose a Python-based EEG preprocessing pipeline optimized for self-supervised learning.
This optimization stabilizes self-supervised training and enhances performance on downstream tasks.
- Score: 2.705542761685457
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Electroencephalography (EEG) research typically focuses on tasks with narrowly defined objectives, but recent studies are expanding into the use of unlabeled data within larger models, aiming for a broader range of applications. This addresses a critical challenge in EEG research. For example, Kostas et al. (2021) show that self-supervised learning (SSL) outperforms traditional supervised methods. Given the high noise levels in EEG data, we argue that further improvements are possible with additional preprocessing. Current preprocessing methods often fail to efficiently manage the large data volumes required for SSL, due to their lack of optimization, reliance on subjective manual corrections, and validation processes or inflexible protocols that limit SSL. We propose a Python-based EEG preprocessing pipeline optimized for self-supervised learning, designed to efficiently process large-scale data. This optimization not only stabilizes self-supervised training but also enhances performance on downstream tasks compared to training with raw data.
Related papers
- Beware of Calibration Data for Pruning Large Language Models [41.1689082093302]
Post-training pruning is a promising method that does not require resource-intensive iterative training.
We show that the effects of calibration data even value more than designing advanced pruning strategies.
Our preliminary exploration also discloses that using calibration data similar to the training data can yield better performance.
arXiv Detail & Related papers (2024-10-23T09:36:21Z) - Dynamic Gradient Alignment for Online Data Mixing [23.774035761200746]
The composition of training data mixtures is critical for effectively training large language models (LLMs)
Traditional approaches to this problem include ad-hoc reweighting methods, importance sampling, and gradient alignment techniques.
This paper focuses on gradient alignment and introduces Dynamic Gradient Alignment (DGA), a scalable online gradient alignment algorithm.
arXiv Detail & Related papers (2024-10-03T14:00:44Z) - Dataset Distillation via Knowledge Distillation: Towards Efficient Self-Supervised Pre-Training of Deep Networks [10.932880269282014]
We propose the first effective DD method for SSL pre-training.
Specifically, we train a small student model to match the representations of a larger teacher model trained with SSL.
As the KD objective has considerably lower variance than SSL, our approach can generate synthetic datasets that can successfully pre-train high-quality encoders.
arXiv Detail & Related papers (2024-10-03T00:39:25Z) - Denoising Pre-Training and Customized Prompt Learning for Efficient Multi-Behavior Sequential Recommendation [69.60321475454843]
We propose DPCPL, the first pre-training and prompt-tuning paradigm tailored for Multi-Behavior Sequential Recommendation.
In the pre-training stage, we propose a novel Efficient Behavior Miner (EBM) to filter out the noise at multiple time scales.
Subsequently, we propose to tune the pre-trained model in a highly efficient manner with the proposed Customized Prompt Learning (CPL) module.
arXiv Detail & Related papers (2024-08-21T06:48:38Z) - Incremental Self-training for Semi-supervised Learning [56.57057576885672]
IST is simple yet effective and fits existing self-training-based semi-supervised learning methods.
We verify the proposed IST on five datasets and two types of backbone, effectively improving the recognition accuracy and learning speed.
arXiv Detail & Related papers (2024-04-14T05:02:00Z) - Take the Bull by the Horns: Hard Sample-Reweighted Continual Training
Improves LLM Generalization [165.98557106089777]
A key challenge is to enhance the capabilities of large language models (LLMs) amid a looming shortage of high-quality training data.
Our study starts from an empirical strategy for the light continual training of LLMs using their original pre-training data sets.
We then formalize this strategy into a principled framework of Instance-Reweighted Distributionally Robust Optimization.
arXiv Detail & Related papers (2024-02-22T04:10:57Z) - Progressive Feature Adjustment for Semi-supervised Learning from
Pretrained Models [39.42802115580677]
Semi-supervised learning (SSL) can leverage both labeled and unlabeled data to build a predictive model.
Recent literature suggests that naively applying state-of-the-art SSL with a pretrained model fails to unleash the full potential of training data.
We propose to use pseudo-labels from the unlabelled data to update the feature extractor that is less sensitive to incorrect labels.
arXiv Detail & Related papers (2023-09-09T01:57:14Z) - In-Domain Self-Supervised Learning Improves Remote Sensing Image Scene
Classification [5.323049242720532]
Self-supervised learning has emerged as a promising approach for remote sensing image classification.
We present a study of different self-supervised pre-training strategies and evaluate their effect across 14 downstream datasets.
arXiv Detail & Related papers (2023-07-04T10:57:52Z) - To Repeat or Not To Repeat: Insights from Scaling LLM under Token-Crisis [50.31589712761807]
Large language models (LLMs) are notoriously token-hungry during pre-training, and high-quality text data on the web is approaching its scaling limit for LLMs.
We investigate the consequences of repeating pre-training data, revealing that the model is susceptible to overfitting.
Second, we examine the key factors contributing to multi-epoch degradation, finding that significant factors include dataset size, model parameters, and training objectives.
arXiv Detail & Related papers (2023-05-22T17:02:15Z) - Open-Set Semi-Supervised Learning for 3D Point Cloud Understanding [62.17020485045456]
It is commonly assumed in semi-supervised learning (SSL) that the unlabeled data are drawn from the same distribution as that of the labeled ones.
We propose to selectively utilize unlabeled data through sample weighting, so that only conducive unlabeled data would be prioritized.
arXiv Detail & Related papers (2022-05-02T16:09:17Z) - Omni-supervised Facial Expression Recognition via Distilled Data [120.11782405714234]
We propose omni-supervised learning to exploit reliable samples in a large amount of unlabeled data for network training.
We experimentally verify that the new dataset can significantly improve the ability of the learned FER model.
To tackle this, we propose to apply a dataset distillation strategy to compress the created dataset into several informative class-wise images.
arXiv Detail & Related papers (2020-05-18T09:36:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.