Universality of Real Minimal Complexity Reservoir
- URL: http://arxiv.org/abs/2408.08071v1
- Date: Thu, 15 Aug 2024 10:44:33 GMT
- Title: Universality of Real Minimal Complexity Reservoir
- Authors: Robert Simon Fong, Boyu Li, Peter Tiňo,
- Abstract summary: Reservoir Computing (RC) models are distinguished by their fixed, non-trainable input layer and dynamically coupled reservoir.
Simple Cycle Reservoirs (SCR) represent a specialized class of RC models with a highly constrained reservoir architecture.
SCRs operating in real domain are universal approximators of time-invariant dynamic filters with fading memory.
- Score: 0.358439716487063
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reservoir Computing (RC) models, a subclass of recurrent neural networks, are distinguished by their fixed, non-trainable input layer and dynamically coupled reservoir, with only the static readout layer being trained. This design circumvents the issues associated with backpropagating error signals through time, thereby enhancing both stability and training efficiency. RC models have been successfully applied across a broad range of application domains. Crucially, they have been demonstrated to be universal approximators of time-invariant dynamic filters with fading memory, under various settings of approximation norms and input driving sources. Simple Cycle Reservoirs (SCR) represent a specialized class of RC models with a highly constrained reservoir architecture, characterized by uniform ring connectivity and binary input-to-reservoir weights with an aperiodic sign pattern. For linear reservoirs, given the reservoir size, the reservoir construction has only one degree of freedom -- the reservoir cycle weight. Such architectures are particularly amenable to hardware implementations without significant performance degradation in many practical tasks. In this study we endow these observations with solid theoretical foundations by proving that SCRs operating in real domain are universal approximators of time-invariant dynamic filters with fading memory. Our results supplement recent research showing that SCRs in the complex domain can approximate, to arbitrary precision, any unrestricted linear reservoir with a non-linear readout. We furthermore introduce a novel method to drastically reduce the number of SCR units, making such highly constrained architectures natural candidates for low-complexity hardware implementations. Our findings are supported by empirical studies on real-world time series datasets.
Related papers
- Deep Recurrent Stochastic Configuration Networks for Modelling Nonlinear Dynamic Systems [3.8719670789415925]
This paper proposes a novel deep reservoir computing framework, termed deep recurrent configuration network (DeepRSCN)
DeepRSCNs are incrementally constructed, with all reservoir nodes directly linked to the final output.
Given a set of training samples, DeepRSCNs can quickly generate learning representations, which consist of random basis functions with cascaded input readout weights.
arXiv Detail & Related papers (2024-10-28T10:33:15Z) - SimBa: Simplicity Bias for Scaling Up Parameters in Deep Reinforcement Learning [49.83621156017321]
SimBa is an architecture designed to scale up parameters in deep RL by injecting a simplicity bias.
By scaling up parameters with SimBa, the sample efficiency of various deep RL algorithms-including off-policy, on-policy, and unsupervised methods-is consistently improved.
arXiv Detail & Related papers (2024-10-13T07:20:53Z) - A domain decomposition-based autoregressive deep learning model for unsteady and nonlinear partial differential equations [2.7755345520127936]
We propose a domain-decomposition-based deep learning (DL) framework, named CoMLSim, for accurately modeling unsteady and nonlinear partial differential equations (PDEs)
The framework consists of two key components: (a) a convolutional neural network (CNN)-based autoencoder architecture and (b) an autoregressive model composed of fully connected layers.
arXiv Detail & Related papers (2024-08-26T17:50:47Z) - Simple Cycle Reservoirs are Universal [0.358439716487063]
Reservoir models form a subclass of recurrent neural networks with fixed non-trainable input and dynamic coupling weights.
We show that they are capable of universal approximation of any unrestricted linear reservoir system.
arXiv Detail & Related papers (2023-08-21T15:35:59Z) - Universal Approximation of Linear Time-Invariant (LTI) Systems through RNNs: Power of Randomness in Reservoir Computing [19.995241682744567]
Reservoir computing (RC) is a special RNN where the recurrent weights are randomized and left untrained.
We show that RC can universally approximate a general linear time-invariant (LTI) system.
arXiv Detail & Related papers (2023-08-04T17:04:13Z) - Effective Invertible Arbitrary Image Rescaling [77.46732646918936]
Invertible Neural Networks (INN) are able to increase upscaling accuracy significantly by optimizing the downscaling and upscaling cycle jointly.
A simple and effective invertible arbitrary rescaling network (IARN) is proposed to achieve arbitrary image rescaling by training only one model in this work.
It is shown to achieve a state-of-the-art (SOTA) performance in bidirectional arbitrary rescaling without compromising perceptual quality in LR outputs.
arXiv Detail & Related papers (2022-09-26T22:22:30Z) - SreaMRAK a Streaming Multi-Resolution Adaptive Kernel Algorithm [60.61943386819384]
Existing implementations of KRR require that all the data is stored in the main memory.
We propose StreaMRAK - a streaming version of KRR.
We present a showcase study on two synthetic problems and the prediction of the trajectory of a double pendulum.
arXiv Detail & Related papers (2021-08-23T21:03:09Z) - Efficient Micro-Structured Weight Unification and Pruning for Neural
Network Compression [56.83861738731913]
Deep Neural Network (DNN) models are essential for practical applications, especially for resource limited devices.
Previous unstructured or structured weight pruning methods can hardly truly accelerate inference.
We propose a generalized weight unification framework at a hardware compatible micro-structured level to achieve high amount of compression and acceleration.
arXiv Detail & Related papers (2021-06-15T17:22:59Z) - Reservoir Based Edge Training on RF Data To Deliver Intelligent and
Efficient IoT Spectrum Sensors [0.6451914896767135]
We propose a processing architecture that supports general machine learning algorithms on compact mobile devices.
Deep Delay Loop Reservoir Computing (DLR) delivers reductions in form factor, hardware complexity and latency, compared to the State-of-the-Art (SoA)
We present DLR architectures composed of multiple smaller loops whose state vectors are linearly combined to create a lower dimensional input into Ridge regression.
arXiv Detail & Related papers (2021-04-01T20:08:01Z) - Neural BRDF Representation and Importance Sampling [79.84316447473873]
We present a compact neural network-based representation of reflectance BRDF data.
We encode BRDFs as lightweight networks, and propose a training scheme with adaptive angular sampling.
We evaluate encoding results on isotropic and anisotropic BRDFs from multiple real-world datasets.
arXiv Detail & Related papers (2021-02-11T12:00:24Z) - Kernel and Rich Regimes in Overparametrized Models [69.40899443842443]
We show that gradient descent on overparametrized multilayer networks can induce rich implicit biases that are not RKHS norms.
We also demonstrate this transition empirically for more complex matrix factorization models and multilayer non-linear networks.
arXiv Detail & Related papers (2020-02-20T15:43:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.