Learned denoising with simulated and experimental low-dose CT data
- URL: http://arxiv.org/abs/2408.08115v1
- Date: Thu, 15 Aug 2024 12:24:22 GMT
- Title: Learned denoising with simulated and experimental low-dose CT data
- Authors: Maximilian B. Kiss, Ander Biguri, Carola-Bibiane Schönlieb, K. Joost Batenburg, Felix Lucka,
- Abstract summary: This work explores the application of machine learning methods, specifically convolutional neural networks (CNNs), in the context of noise reduction for computed tomography (CT) imaging.
We utilize a large 2D computed tomography dataset for machine learning to carry out for the first time a comprehensive study on the differences between the observed performances of algorithms trained on simulated noisy data and on real-world experimental noisy data.
- Score: 8.689987421968116
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Like in many other research fields, recent developments in computational imaging have focused on developing machine learning (ML) approaches to tackle its main challenges. To improve the performance of computational imaging algorithms, machine learning methods are used for image processing tasks such as noise reduction. Generally, these ML methods heavily rely on the availability of high-quality data on which they are trained. This work explores the application of ML methods, specifically convolutional neural networks (CNNs), in the context of noise reduction for computed tomography (CT) imaging. We utilize a large 2D computed tomography dataset for machine learning to carry out for the first time a comprehensive study on the differences between the observed performances of algorithms trained on simulated noisy data and on real-world experimental noisy data. The study compares the performance of two common CNN architectures, U-Net and MSD-Net, that are trained and evaluated on both simulated and experimental noisy data. The results show that while sinogram denoising performed better with simulated noisy data if evaluated in the sinogram domain, the performance did not carry over to the reconstruction domain where training on experimental noisy data shows a higher performance in denoising experimental noisy data. Training the algorithms in an end-to-end fashion from sinogram to reconstruction significantly improved model performance, emphasizing the importance of matching raw measurement data to high-quality CT reconstructions. The study furthermore suggests the need for more sophisticated noise simulation approaches to bridge the gap between simulated and real-world data in CT image denoising applications and gives insights into the challenges and opportunities in leveraging simulated data for machine learning in computational imaging.
Related papers
- A Real Benchmark Swell Noise Dataset for Performing Seismic Data Denoising via Deep Learning [34.163242023030016]
This article presents a benchmark dataset composed of synthetic seismic data corrupted with noise extracted from a filtering process implemented on real data.
It is proposed as a benchmark for accelerating the development of new solutions for seismic data denoising.
The results show that DL models are effective at denoising seismic data, but some issues remain to be solved.
arXiv Detail & Related papers (2024-10-02T13:06:18Z) - SeNM-VAE: Semi-Supervised Noise Modeling with Hierarchical Variational Autoencoder [13.453138169497903]
SeNM-VAE is a semi-supervised noise modeling method that leverages both paired and unpaired datasets to generate realistic degraded data.
We employ our method to generate paired training samples for real-world image denoising and super-resolution tasks.
Our approach excels in the quality of synthetic degraded images compared to other unpaired and paired noise modeling methods.
arXiv Detail & Related papers (2024-03-26T09:03:40Z) - Learning with Noisy Foundation Models [95.50968225050012]
This paper is the first work to comprehensively understand and analyze the nature of noise in pre-training datasets.
We propose a tuning method (NMTune) to affine the feature space to mitigate the malignant effect of noise and improve generalization.
arXiv Detail & Related papers (2024-03-11T16:22:41Z) - Realistic Noise Synthesis with Diffusion Models [68.48859665320828]
Deep image denoising models often rely on large amount of training data for the high quality performance.
We propose a novel method that synthesizes realistic noise using diffusion models, namely Realistic Noise Synthesize Diffusor (RNSD)
RNSD can incorporate guided multiscale content, such as more realistic noise with spatial correlations can be generated at multiple frequencies.
arXiv Detail & Related papers (2023-05-23T12:56:01Z) - A Comparison of Image Denoising Methods [23.69991964391047]
We compare a variety of denoising methods on both synthetic and real-world datasets for different applications.
We show that a simple matrix-based algorithm may be able to produce similar results compared with its tensor counterparts.
In spite of the progress in recent years, we discuss shortcomings and possible extensions of existing techniques.
arXiv Detail & Related papers (2023-04-18T13:41:42Z) - The role of noise in denoising models for anomaly detection in medical
images [62.0532151156057]
Pathological brain lesions exhibit diverse appearance in brain images.
Unsupervised anomaly detection approaches have been proposed using only normal data for training.
We show that optimization of the spatial resolution and magnitude of the noise improves the performance of different model training regimes.
arXiv Detail & Related papers (2023-01-19T21:39:38Z) - Improving the Robustness of Summarization Models by Detecting and
Removing Input Noise [50.27105057899601]
We present a large empirical study quantifying the sometimes severe loss in performance from different types of input noise for a range of datasets and model sizes.
We propose a light-weight method for detecting and removing such noise in the input during model inference without requiring any training, auxiliary models, or even prior knowledge of the type of noise.
arXiv Detail & Related papers (2022-12-20T00:33:11Z) - An Adversarial Active Sampling-based Data Augmentation Framework for
Manufacturable Chip Design [55.62660894625669]
Lithography modeling is a crucial problem in chip design to ensure a chip design mask is manufacturable.
Recent developments in machine learning have provided alternative solutions in replacing the time-consuming lithography simulations with deep neural networks.
We propose a litho-aware data augmentation framework to resolve the dilemma of limited data and improve the machine learning model performance.
arXiv Detail & Related papers (2022-10-27T20:53:39Z) - Learnability Enhancement for Low-light Raw Denoising: Where Paired Real
Data Meets Noise Modeling [22.525679742823513]
We present a learnability enhancement strategy to reform paired real data according to noise modeling.
Our strategy consists of two efficient techniques: shot noise augmentation (SNA) and dark shading correction (DSC)
arXiv Detail & Related papers (2022-07-13T10:23:28Z) - Data Consistent CT Reconstruction from Insufficient Data with Learned
Prior Images [70.13735569016752]
We investigate the robustness of deep learning in CT image reconstruction by showing false negative and false positive lesion cases.
We propose a data consistent reconstruction (DCR) method to improve their image quality, which combines the advantages of compressed sensing and deep learning.
The efficacy of the proposed method is demonstrated in cone-beam CT with truncated data, limited-angle data and sparse-view data, respectively.
arXiv Detail & Related papers (2020-05-20T13:30:49Z) - Noise2Inverse: Self-supervised deep convolutional denoising for
tomography [0.0]
Noise2Inverse is a deep CNN-based denoising method for linear image reconstruction algorithms.
We develop a theoretical framework which shows that such training indeed obtains a denoising CNN.
On simulated CT datasets, Noise2Inverse demonstrates an improvement in peak signal-to-noise ratio and structural similarity index.
arXiv Detail & Related papers (2020-01-31T12:50:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.