A Real Benchmark Swell Noise Dataset for Performing Seismic Data Denoising via Deep Learning
- URL: http://arxiv.org/abs/2410.08231v1
- Date: Wed, 2 Oct 2024 13:06:18 GMT
- Title: A Real Benchmark Swell Noise Dataset for Performing Seismic Data Denoising via Deep Learning
- Authors: Pablo M. Barros, Roosevelt de L. Sardinha, Giovanny A. M. Arboleda, Lessandro de S. S. Valente, Isabelle R. V. de Melo, Albino Aveleda, André Bulcão, Sergio L. Netto, Alexandre G. Evsukoff,
- Abstract summary: This article presents a benchmark dataset composed of synthetic seismic data corrupted with noise extracted from a filtering process implemented on real data.
It is proposed as a benchmark for accelerating the development of new solutions for seismic data denoising.
The results show that DL models are effective at denoising seismic data, but some issues remain to be solved.
- Score: 34.163242023030016
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The recent development of deep learning (DL) methods for computer vision has been driven by the creation of open benchmark datasets on which new algorithms can be tested and compared with reproducible results. Although DL methods have many applications in geophysics, few real seismic datasets are available for benchmarking DL models, especially for denoising real data, which is one of the main problems in seismic data processing scenarios in the oil and gas industry. This article presents a benchmark dataset composed of synthetic seismic data corrupted with noise extracted from a filtering process implemented on real data. In this work, a comparison between two well-known DL-based denoising models is conducted on this dataset, which is proposed as a benchmark for accelerating the development of new solutions for seismic data denoising. This work also introduces a new evaluation metric that can capture small variations in model results. The results show that DL models are effective at denoising seismic data, but some issues remain to be solved.
Related papers
- Learned denoising with simulated and experimental low-dose CT data [8.689987421968116]
This work explores the application of machine learning methods, specifically convolutional neural networks (CNNs), in the context of noise reduction for computed tomography (CT) imaging.
We utilize a large 2D computed tomography dataset for machine learning to carry out for the first time a comprehensive study on the differences between the observed performances of algorithms trained on simulated noisy data and on real-world experimental noisy data.
arXiv Detail & Related papers (2024-08-15T12:24:22Z) - Domain-Transferred Synthetic Data Generation for Improving Monocular Depth Estimation [9.812476193015488]
We propose a method of data generation in simulation using 3D synthetic environments and CycleGAN domain transfer.
We compare this method of data generation to the popular NYUDepth V2 dataset by training a depth estimation model based on the DenseDepth structure using different training sets of real and simulated data.
We evaluate the performance of the models on newly collected images and LiDAR depth data from a Husky robot to verify the generalizability of the approach and show that GAN-transformed data can serve as an effective alternative to real-world data, particularly in depth estimation.
arXiv Detail & Related papers (2024-05-02T09:21:10Z) - Real Acoustic Fields: An Audio-Visual Room Acoustics Dataset and Benchmark [65.79402756995084]
Real Acoustic Fields (RAF) is a new dataset that captures real acoustic room data from multiple modalities.
RAF is the first dataset to provide densely captured room acoustic data.
arXiv Detail & Related papers (2024-03-27T17:59:56Z) - SeNM-VAE: Semi-Supervised Noise Modeling with Hierarchical Variational Autoencoder [13.453138169497903]
SeNM-VAE is a semi-supervised noise modeling method that leverages both paired and unpaired datasets to generate realistic degraded data.
We employ our method to generate paired training samples for real-world image denoising and super-resolution tasks.
Our approach excels in the quality of synthetic degraded images compared to other unpaired and paired noise modeling methods.
arXiv Detail & Related papers (2024-03-26T09:03:40Z) - SoftPatch: Unsupervised Anomaly Detection with Noisy Data [67.38948127630644]
This paper considers label-level noise in image sensory anomaly detection for the first time.
We propose a memory-based unsupervised AD method, SoftPatch, which efficiently denoises the data at the patch level.
Compared with existing methods, SoftPatch maintains a strong modeling ability of normal data and alleviates the overconfidence problem in coreset.
arXiv Detail & Related papers (2024-03-21T08:49:34Z) - Learning with Noisy Foundation Models [95.50968225050012]
This paper is the first work to comprehensively understand and analyze the nature of noise in pre-training datasets.
We propose a tuning method (NMTune) to affine the feature space to mitigate the malignant effect of noise and improve generalization.
arXiv Detail & Related papers (2024-03-11T16:22:41Z) - Realistic Noise Synthesis with Diffusion Models [68.48859665320828]
Deep image denoising models often rely on large amount of training data for the high quality performance.
We propose a novel method that synthesizes realistic noise using diffusion models, namely Realistic Noise Synthesize Diffusor (RNSD)
RNSD can incorporate guided multiscale content, such as more realistic noise with spatial correlations can be generated at multiple frequencies.
arXiv Detail & Related papers (2023-05-23T12:56:01Z) - Minimizing the Accumulated Trajectory Error to Improve Dataset
Distillation [151.70234052015948]
We propose a novel approach that encourages the optimization algorithm to seek a flat trajectory.
We show that the weights trained on synthetic data are robust against the accumulated errors perturbations with the regularization towards the flat trajectory.
Our method, called Flat Trajectory Distillation (FTD), is shown to boost the performance of gradient-matching methods by up to 4.7%.
arXiv Detail & Related papers (2022-11-20T15:49:11Z) - Learnability Enhancement for Low-light Raw Denoising: Where Paired Real
Data Meets Noise Modeling [22.525679742823513]
We present a learnability enhancement strategy to reform paired real data according to noise modeling.
Our strategy consists of two efficient techniques: shot noise augmentation (SNA) and dark shading correction (DSC)
arXiv Detail & Related papers (2022-07-13T10:23:28Z) - Bridging the Gap Between Clean Data Training and Real-World Inference
for Spoken Language Understanding [76.89426311082927]
Existing models are trained on clean data, which causes a textitgap between clean data training and real-world inference.
We propose a method from the perspective of domain adaptation, by which both high- and low-quality samples are embedding into similar vector space.
Experiments on the widely-used dataset, Snips, and large scale in-house dataset (10 million training examples) demonstrate that this method not only outperforms the baseline models on real-world (noisy) corpus but also enhances the robustness, that is, it produces high-quality results under a noisy environment.
arXiv Detail & Related papers (2021-04-13T17:54:33Z) - A Unified Plug-and-Play Framework for Effective Data Denoising and
Robust Abstention [4.200576272300216]
We propose a unified filtering framework leveraging underlying data density.
Our framework can effectively denoising training data and avoid predicting uncertain test data points.
arXiv Detail & Related papers (2020-09-25T04:18:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.