論文の概要: KOALA: Enhancing Speculative Decoding for LLM via Multi-Layer Draft Heads with Adversarial Learning
- arxiv url: http://arxiv.org/abs/2408.08146v1
- Date: Thu, 15 Aug 2024 13:29:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-16 13:46:24.770823
- Title: KOALA: Enhancing Speculative Decoding for LLM via Multi-Layer Draft Heads with Adversarial Learning
- Title(参考訳): KOALA: 逆学習による多層ドラフトヘッドによるLCMの投機的復号化
- Authors: Kaiqi Zhang, Jing Zhao, Rui Chen,
- Abstract要約: 大規模言語モデル(LLM)は、自己回帰的復号性のため、高い推論遅延を示す。
我々は,従来の指導訓練に対人学習を取り入れた,ドラフトヘッドへのアプローチであるKoALAを紹介する。
KOALAは、その後のトークンを予測する際に、ドラフトヘッドの精度を大幅に改善する。
この改良は、ドラフトのオーバーヘッドをわずかに増加させるコストが伴うが、KOALAはドラフトヘッドの可能性を大幅に開放する。
- 参考スコア(独自算出の注目度): 7.519349066367654
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) exhibit high inference latency due to their autoregressive decoding nature. While the draft head in speculative decoding mitigates this issue, its full potential remains unexplored. In this paper, we introduce KOALA (K-layer Optimized Adversarial Learning Architecture), an orthogonal approach to the draft head. By transforming the conventional single-layer draft head into a multi-layer architecture and incorporating adversarial learning into the traditional supervised training, KOALA significantly improves the accuracy of the draft head in predicting subsequent tokens, thus more closely mirroring the functionality of LLMs. Although this improvement comes at the cost of slightly increased drafting overhead, KOALA substantially unlocks the draft head's potential, greatly enhancing speculative decoding. We conducted comprehensive evaluations of KOALA, including both autoregressive and non-autoregressive draft heads across various tasks, demonstrating a latency speedup ratio improvement of 0.24x-0.41x, which is 10.57%-14.09% faster than the original draft heads.
- Abstract(参考訳): 大規模言語モデル(LLM)は、自己回帰的復号性のため、高い推論遅延を示す。
投機的復号化の草案はこの問題を緩和するが、その潜在能力は未解明のままである。
本稿では,原案の直交的アプローチであるKOALA(K-layer Optimized Adversarial Learning Architecture)を紹介する。
従来の単層ドラフトヘッドを多層アーキテクチャに変換し、従来の教師付きトレーニングに対向学習を取り入れることで、後のトークンを予測する際のドラフトヘッドの精度を大幅に改善し、LCMの機能をより深く反映する。
この改良は、ドラフトのオーバーヘッドをわずかに増加させるコストが伴うが、KOALAはドラフトヘッドの可能性を大幅に解放し、投機的復号化を大幅に強化する。
各種タスクにおける自己回帰と非自己回帰の両方のドラフトヘッドを含むKOALAの総合評価を行い,従来のドラフトヘッドよりも10.57%~14.09%高速な0.24x-0.41xの遅延スピードアップ比の改善を実証した。
関連論文リスト
- An Early FIRST Reproduction and Improvements to Single-Token Decoding for Fast Listwise Reranking [50.81324768683995]
FIRSTは、学習からランクへの目的を統合し、最初の生成されたトークンのみのロジットを活用する新しいアプローチである。
我々は、FIRSTの評価をTRECディープラーニングデータセット(DL19-22)に拡張し、様々な領域でその堅牢性を検証する。
我々の実験は、単一トークンの高速リランクは、ドメイン外リランクの品質を損なうものではないことを確認した。
論文 参考訳(メタデータ) (2024-11-08T12:08:17Z) - Graph-Structured Speculative Decoding [52.94367724136063]
投機的復号化は、大規模言語モデルの推論を加速する有望な手法として登場した。
本稿では, 有向非巡回グラフ(DAG)を応用して, 起案された仮説を管理する革新的な手法を提案する。
我々は1.73$times$から1.96$times$に顕著なスピードアップを観察し、標準投機的復号法を大幅に上回った。
論文 参考訳(メタデータ) (2024-07-23T06:21:24Z) - Speculative RAG: Enhancing Retrieval Augmented Generation through Drafting [68.90949377014742]
Speculative RAG(投機的RAG)は、より大規模なジェネラリストLMを利用して、より小さな蒸留専門のLMによって並列に生成された複数のRAGドラフトを効率よく検証するフレームワークである。
提案手法は,より小さな専門家のLMにドラフト作成を委譲することでRAGを加速し,より大きなジェネラリストのLMがドラフトに1回の検証パスを実行する。
PubHealthの従来のRAGシステムと比較して、レイテンシを51%削減しながら、最大12.97%の精度向上を実現している。
論文 参考訳(メタデータ) (2024-07-11T06:50:19Z) - FFN-SkipLLM: A Hidden Gem for Autoregressive Decoding with Adaptive Feed Forward Skipping [49.66872823080736]
自己回帰型大規模言語モデル(LLaMa, GPT)は、言語理解と生成において顕著な成功を収めている。
発生時に発生する過負荷を軽減するため、いくつかの早期退避および層下降戦略が提案されている。
本稿では,入力適応型フィードフォワードスキップ戦略であるFFN-SkipLLMを提案する。
論文 参考訳(メタデータ) (2024-04-05T02:35:43Z) - Direct Alignment of Draft Model for Speculative Decoding with Chat-Fine-Tuned LLMs [11.245862832561176]
投機的復号化による推論アクセラレーションを実現するためには、高品質なドラフトモデルをトレーニングする必要がある。
我々は、Llama 2 Chat Drafter 115M、Llama 2 Chat 7B以上のドラフトモデル、オリジナルサイズの1.64%しか持たないLlama 2 Chat Drafter 115Mを訓練する。
Llama 2 Chat Dr After 115M with speculative decoding は最大2.3ブロック効率と2.4$times$ speed-upを実現している。
論文 参考訳(メタデータ) (2024-02-29T19:55:06Z) - Chimera: A Lossless Decoding Method for Accelerating Large Language Models Inference by Fusing all Tokens [15.566726645722657]
投機的サンプリングに特化して設計された新しいフレームワークを提案する。
このフレームワーク内では、以前に生成されたトークンを効果的に活用し、後続の単語を予測する軽量なドラフトモデルを導入する。
我々は、バニラ自動回帰復号方式と比較して平均遅延速度比が2.7倍になるという印象的な結果を示した。
論文 参考訳(メタデータ) (2024-02-24T08:10:39Z) - GliDe with a CaPE: A Low-Hassle Method to Accelerate Speculative
Decoding [81.01996600734616]
GliDe と CaPE を導入し,バニラ投機復号への2つの低ハードル修正を行った。
GliDeは、ターゲットのLLMからキャッシュされたキーと値を再利用する、修正されたドラフトモデルアーキテクチャである。
コード、データ、トレーニング済みのドラフトモデルをリリースします。
論文 参考訳(メタデータ) (2024-02-03T08:44:11Z) - Cascade Speculative Drafting for Even Faster LLM Inference [25.642604897018852]
投機的復号化により、大言語モデル(LLM)推論の効率が向上する。
本稿では2種類のカスケードを組み込んだ投機的実行アルゴリズムであるカスケード投機ドラフト(CS Drafting)を紹介する。
CS Draftingは、我々の実験で投機的復号化よりも81%の高速化を実現している。
論文 参考訳(メタデータ) (2023-12-18T18:59:46Z) - Online Speculative Decoding [34.987825705622555]
大規模言語モデルの推論を高速化するオンライン投機的復号法を導入する。
主なアイデアは、観測されたユーザクエリデータに対する(複数)ドラフトモデルを継続的に更新することである。
本稿では,知識蒸留に基づくオンライン投機的デコーディングのプロトタイプを開発し,合成データと実データの両方を用いて評価する。
論文 参考訳(メタデータ) (2023-10-11T04:03:42Z) - DoLa: Decoding by Contrasting Layers Improves Factuality in Large
Language Models [79.01926242857613]
大型言語モデル(LLM)は幻覚を起こす傾向があり、事前訓練中に見られる事実から逸脱した内容を生成する。
事前学習したLLMによる幻覚を低減するための簡単な復号法を提案する。
コントラスティング・レイヤ(DoLa)アプローチによるこのデコーディングは,事実知識をよりよく提示し,誤った事実の生成を減らすことができる。
論文 参考訳(メタデータ) (2023-09-07T17:45:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。