論文の概要: Not Every Image is Worth a Thousand Words: Quantifying Originality in Stable Diffusion
- arxiv url: http://arxiv.org/abs/2408.08184v1
- Date: Thu, 15 Aug 2024 14:42:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-16 13:46:24.735457
- Title: Not Every Image is Worth a Thousand Words: Quantifying Originality in Stable Diffusion
- Title(参考訳): すべての画像が数千ワードの価値があるわけではない:安定拡散における原点の定量化
- Authors: Adi Haviv, Shahar Sarfaty, Uri Hacohen, Niva Elkin-Koren, Roi Livni, Amit H Bermano,
- Abstract要約: 本研究は,テキスト・ツー・イメージ(T2I)生成拡散モデルにおける原点の定量化という課題に対処する。
本稿では,テキストのインバージョンを利用して画像の原点度をモデルによる再構成に必要なトークン数に基づいて測定する手法を提案する。
- 参考スコア(独自算出の注目度): 21.252145402613472
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This work addresses the challenge of quantifying originality in text-to-image (T2I) generative diffusion models, with a focus on copyright originality. We begin by evaluating T2I models' ability to innovate and generalize through controlled experiments, revealing that stable diffusion models can effectively recreate unseen elements with sufficiently diverse training data. Then, our key insight is that concepts and combinations of image elements the model is familiar with, and saw more during training, are more concisly represented in the model's latent space. We hence propose a method that leverages textual inversion to measure the originality of an image based on the number of tokens required for its reconstruction by the model. Our approach is inspired by legal definitions of originality and aims to assess whether a model can produce original content without relying on specific prompts or having the training data of the model. We demonstrate our method using both a pre-trained stable diffusion model and a synthetic dataset, showing a correlation between the number of tokens and image originality. This work contributes to the understanding of originality in generative models and has implications for copyright infringement cases.
- Abstract(参考訳): 本研究は,テキスト・ツー・イメージ(T2I)生成拡散モデルにおいて,著作権の独創性に着目したオリジナル性を定量化することの課題に対処する。
まず、制御された実験を通してT2Iモデルを革新し、一般化する能力を評価し、安定した拡散モデルが十分に多様なトレーニングデータを用いて、目に見えない要素を効果的に再現できることを明らかにする。
そして、私たちのキーとなる洞察は、モデルが慣れ親しんだイメージ要素の概念と組み合わせが、トレーニング中によりよく見られるようになり、モデルの潜在空間でより簡潔に表現されるということです。
そこで本研究では,テキストのインバージョンを利用して,モデルによる再構成に必要なトークン数に基づいて画像の原点度を測定する手法を提案する。
提案手法は,モデルが特定のプロンプトに依存したり,モデルのトレーニングデータを持っていなくても,オリジナルコンテンツを生成できるかどうかを評価することを目的としている。
本研究では,事前学習した安定拡散モデルと合成データセットの両方を用いて,トークン数と画像の原性との相関関係を示す。
この研究は、生成モデルにおける独創性の理解に寄与し、著作権侵害事件に影響を及ぼす。
関連論文リスト
- Generalizable Origin Identification for Text-Guided Image-to-Image Diffusion Models [39.234894330025114]
テキストインプロンプトに基づく画像の翻訳において,テキスト誘導画像から画像への拡散モデルが優れている。
これは、テキスト誘導画像-画像拡散モデル(ID$2$)の原点識別タスクの導入を動機付けます。
ID$2$の直接的な解決策は、クエリと参照イメージの両方から機能を抽出し比較するために、特別なディープ埋め込みモデルをトレーニングすることである。
論文 参考訳(メタデータ) (2025-01-04T20:34:53Z) - PromptLA: Towards Integrity Verification of Black-box Text-to-Image Diffusion Models [16.67563247104523]
現在のテキスト・ツー・イメージ(T2I)拡散モデルは高品質な画像を生成することができる。
良心的な目的のためにのみこのモデルを使用することを許可された悪意あるユーザーは、自分のモデルを変更して、有害な社会的影響をもたらす画像を生成するかもしれない。
本稿では,T2I拡散モデルの高精度かつ高精度な完全性検証のための新しいプロンプト選択アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-12-20T07:24:32Z) - Image Regeneration: Evaluating Text-to-Image Model via Generating Identical Image with Multimodal Large Language Models [54.052963634384945]
画像再生タスクを導入し,テキスト・ツー・イメージ・モデルの評価を行う。
我々はGPT4Vを用いて参照画像とT2Iモデルのテキスト入力のギャップを埋める。
また、生成した画像の品質を高めるために、ImageRepainterフレームワークを提案する。
論文 参考訳(メタデータ) (2024-11-14T13:52:43Z) - How Many Van Goghs Does It Take to Van Gogh? Finding the Imitation Threshold [50.33428591760124]
学習データセットにおける概念の頻度とモデルを模倣する能力の関係について検討する。
我々は,複数のモデルをスクラッチからトレーニングする余剰コストを発生させることなく,模倣閾値を推定する効率的な手法を提案する。
論文 参考訳(メタデータ) (2024-10-19T06:28:14Z) - Reinforcing Pre-trained Models Using Counterfactual Images [54.26310919385808]
本稿では,言語誘導型生成対実画像を用いた分類モデル強化のための新しいフレームワークを提案する。
逆ファクト画像データセットを用いてモデルをテストすることにより、モデルの弱点を同定する。
我々は、分類モデルを微調整し強化するために、デファクトイメージを拡張データセットとして採用する。
論文 参考訳(メタデータ) (2024-06-19T08:07:14Z) - Understanding and Mitigating Copying in Diffusion Models [53.03978584040557]
安定拡散のような拡散モデルによって生成される画像は、ますます広まっている。
最近の研究や訴訟でも、これらのモデルがトレーニングデータを複製する傾向にあることが示されている。
論文 参考訳(メタデータ) (2023-05-31T17:58:02Z) - ReGeneration Learning of Diffusion Models with Rich Prompts for
Zero-Shot Image Translation [8.803251014279502]
大規模なテキスト・ツー・イメージモデルは、多彩で高忠実な画像を合成する素晴らしい能力を示した。
現在のモデルでは、編集プロセス中に元の画像の内容に大きな変更を加えることができる。
画像と画像の拡散モデル(ReDiffuser)における再生学習を提案する。
論文 参考訳(メタデータ) (2023-05-08T12:08:12Z) - Generating images of rare concepts using pre-trained diffusion models [32.5337654536764]
テキスト・ツー・イメージ拡散モデルは高品質な画像を合成できるが、様々な制限がある。
これらの制限は、トレーニングデータの長い尾の性質に起因していることが示されています。
ノイズ空間内で適切な生成種を慎重に選択することで、稀な概念を正しく生成できることが示される。
論文 参考訳(メタデータ) (2023-04-27T20:55:38Z) - Ablating Concepts in Text-to-Image Diffusion Models [57.9371041022838]
大規模テキスト・画像拡散モデルでは、強力な構成能力を持つ高忠実度画像を生成することができる。
これらのモデルは典型的には膨大な量のインターネットデータに基づいて訓練されており、しばしば著作権のある資料、ライセンスされた画像、個人写真を含んでいる。
本稿では,事前訓練されたモデルにおいて,目標概念の生成を防止し,効率的に概念を宣言する手法を提案する。
論文 参考訳(メタデータ) (2023-03-23T17:59:42Z) - Diffusion Art or Digital Forgery? Investigating Data Replication in
Diffusion Models [53.03978584040557]
生成した画像とトレーニングサンプルを比較し、コンテンツが複製されたことを検知する画像検索フレームワークについて検討する。
フレームワークをオックスフォード花、Celeb-A、ImageNet、LAIONなど複数のデータセットでトレーニングされた拡散モデルに適用することにより、トレーニングセットのサイズがコンテンツ複製の速度にどのように影響するかを議論する。
論文 参考訳(メタデータ) (2022-12-07T18:58:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。