論文の概要: LLM4DSR: Leveraing Large Language Model for Denoising Sequential Recommendation
- arxiv url: http://arxiv.org/abs/2408.08208v2
- Date: Tue, 26 Nov 2024 08:07:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-27 13:32:04.409837
- Title: LLM4DSR: Leveraing Large Language Model for Denoising Sequential Recommendation
- Title(参考訳): LLM4DSR:シークエンシャルレコメンデーションのための大規模言語モデル
- Authors: Bohao Wang, Feng Liu, Changwang Zhang, Jiawei Chen, Yudi Wu, Sheng Zhou, Xingyu Lou, Jun Wang, Yan Feng, Chun Chen, Can Wang,
- Abstract要約: シーケンスレコメンダは、ユーザの過去のインタラクションシーケンスに基づいてレコメンデーションを生成する。
これらの配列は、しばしばノイズ相互作用によって汚染され、レコメンデーション性能を著しく損なう。
広い言語モデル (LLM) には広い知識と意味論的推論能力が備わっており、この情報ギャップを埋めるための有望な道筋を提供する。
LLMを用いてシーケンシャルなレコメンデーションを識別するLLM4DSRを提案する。
- 参考スコア(独自算出の注目度): 27.255048063428077
- License:
- Abstract: Sequential Recommenders generate recommendations based on users' historical interaction sequences. However, in practice, these collected sequences are often contaminated by noisy interactions, which significantly impairs recommendation performance. Accurately identifying such noisy interactions without additional information is particularly challenging due to the absence of explicit supervisory signals indicating noise. Large Language Models (LLMs), equipped with extensive open knowledge and semantic reasoning abilities, offer a promising avenue to bridge this information gap. However, employing LLMs for denoising in sequential recommendation presents notable challenges: 1) Direct application of pretrained LLMs may not be competent for the denoising task, frequently generating nonsensical responses; 2) Even after fine-tuning, the reliability of LLM outputs remains questionable, especially given the complexity of the denoising task and the inherent hallucinatory issue of LLMs. To tackle these challenges, we propose LLM4DSR, a tailored approach for denoising sequential recommendation using LLMs. We constructed a self-supervised fine-tuning task to activate LLMs' capabilities to identify noisy items and suggest replacements. Furthermore, we developed an uncertainty estimation module that ensures only high-confidence responses are utilized for sequence corrections. Remarkably, LLM4DSR is model-agnostic, allowing corrected sequences to be flexibly applied across various recommendation models. Extensive experiments validate the superiority of LLM4DSR over existing methods.
- Abstract(参考訳): シーケンスレコメンダは、ユーザの過去のインタラクションシーケンスに基づいてレコメンデーションを生成する。
しかし、実際には、これらの配列はしばしばノイズ相互作用によって汚染され、レコメンデーション性能を著しく損なう。
ノイズを示す明示的な監視信号がないため、追加情報のない正確なノイズ相互作用の特定は特に困難である。
大規模な言語モデル(LLM)は、豊富なオープン知識とセマンティック推論能力を備えており、この情報ギャップを橋渡しするための有望な道を提供する。
しかし、シーケンシャルレコメンデーションにおけるLLMの利用は、顕著な課題を呈している。
1) 事前訓練されたLLMの直接適用は,過度に非感覚的応答を生じさせるため,特定業務に適さない可能性がある。
2) 微調整後においても, LLM出力の信頼性は疑わしいが, 認知タスクの複雑さとLLM固有の幻覚的問題を考えると, その信頼性は疑問視される。
これらの課題に対処するため,LLMを用いた逐次レコメンデーション法であるLLM4DSRを提案する。
LLMの機能を活性化し,ノイズのある項目を識別し,代替品を提案する自己教師型微調整タスクを構築した。
さらに,高信頼応答のみをシーケンス修正に利用する不確実性推定モジュールを開発した。
注目すべきは、LLM4DSRはモデルに依存しないため、修正されたシーケンスを様々なレコメンデーションモデルに柔軟に適用することができることである。
LLM4DSRは既存の手法よりも優れていた。
関連論文リスト
- RLRF4Rec: Reinforcement Learning from Recsys Feedback for Enhanced Recommendation Reranking [33.54698201942643]
大規模言語モデル(LLM)は、様々な領域で顕著なパフォーマンスを示している。
本稿では,Reinforcement Learning from Recsys Feedback for Enhanced Recommendation Re rankを組み込んだ新しいフレームワークであるRLRF4Recを紹介する。
論文 参考訳(メタデータ) (2024-10-08T11:42:37Z) - From Yes-Men to Truth-Tellers: Addressing Sycophancy in Large Language Models with Pinpoint Tuning [89.9648814145473]
大規模言語モデル(LLM)は、ユーザプロンプトへの順守を、妥当な応答よりも優先する傾向がある。
近年の研究では、教師付き微調整(SFT)を用いて、梅毒問題を軽減することが提案されている。
そこで本研究では,特定の目的のために関心のあるモジュールを調整した新しいピンポイントチューニング(SPT)を提案する。
論文 参考訳(メタデータ) (2024-09-03T07:01:37Z) - Q*: Improving Multi-step Reasoning for LLMs with Deliberative Planning [53.6472920229013]
大規模言語モデル(LLM)は多くの自然言語タスクにおいて印象的な能力を示している。
LLMは多段階推論を行う際にエラー、幻覚、矛盾する文を生成する傾向がある。
本稿では,LLMの復号化過程を検討計画で導くためのフレームワークであるQ*を紹介する。
論文 参考訳(メタデータ) (2024-06-20T13:08:09Z) - DELRec: Distilling Sequential Pattern to Enhance LLM-based Recommendation [3.5113201254928117]
逐次レコメンデーション(SR)タスクは、ユーザの過去のインタラクションと好みの変化を関連付けることで、レコメンデーションの精度を高める。
従来のモデルは、トレーニングデータ内のシーケンシャルなパターンをキャプチャすることだけに集中し、外部ソースからアイテムタイトルに埋め込まれたより広いコンテキストやセマンティックな情報を無視することが多い。
DelRecは、SRモデルから知識を抽出し、LLMがより効果的なシーケンシャルレコメンデーションのためにこれらの補足情報を容易に理解し利用できるようにすることを目的としている。
論文 参考訳(メタデータ) (2024-06-17T02:47:09Z) - Improve Temporal Awareness of LLMs for Sequential Recommendation [61.723928508200196]
大規模言語モデル(LLM)は、幅広い汎用タスクを解く際、印象的なゼロショット能力を示した。
LLMは時間的情報の認識と利用に不足しており、シーケンシャルなデータの理解を必要とするタスクではパフォーマンスが悪い。
LLMに基づくシーケンシャルレコメンデーションのために、歴史的相互作用の中で時間情報を利用する3つのプロンプト戦略を提案する。
論文 参考訳(メタデータ) (2024-05-05T00:21:26Z) - Re2LLM: Reflective Reinforcement Large Language Model for Session-based Recommendation [23.182787000804407]
セッションベースレコメンデーション(SBR)を強化するための有望なアプローチとして,大規模言語モデル(LLM)が登場している。
本稿では,SBRのための反射強化大言語モデル(Re2LLM)を提案する。
論文 参考訳(メタデータ) (2024-03-25T05:12:18Z) - Causal Prompting: Debiasing Large Language Model Prompting based on Front-Door Adjustment [32.12998469814097]
大規模言語モデル(LLM)のバイアスを効果的に軽減するために,正面調整に基づく新たな因果的プロンプト手法を提案する。
実験結果から,提案手法は7つの自然言語処理データセットにおいて優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2024-03-05T07:47:34Z) - Reflection-Tuning: Data Recycling Improves LLM Instruction-Tuning [79.32236399694077]
トレーニングセットの低品質データは、通常、チューニングのチューニングに有害である。
我々は「反射チューニング」と呼ばれる新しい手法を提案する。
このアプローチでは、オラクルLSMを使用して、データ内の命令や応答の質を検査し、向上することで、元のトレーニングデータをリサイクルする。
論文 参考訳(メタデータ) (2023-10-18T05:13:47Z) - TRACE: A Comprehensive Benchmark for Continual Learning in Large
Language Models [52.734140807634624]
調整された大規模言語モデル(LLM)は、タスク解決、指示に従うこと、安全性を確保することにおいて、例外的な能力を示す。
既存の連続学習ベンチマークでは、LLMをリードする上で十分な課題が欠如している。
LLMにおける継続学習を評価するための新しいベンチマークであるTRACEを紹介する。
論文 参考訳(メタデータ) (2023-10-10T16:38:49Z) - LLMRec: Benchmarking Large Language Models on Recommendation Task [54.48899723591296]
推奨領域におけるLarge Language Models (LLMs) の適用について, 十分に検討されていない。
我々は、評価予測、シーケンシャルレコメンデーション、直接レコメンデーション、説明生成、レビュー要約を含む5つのレコメンデーションタスクにおいて、市販のLLMをベンチマークする。
ベンチマークの結果,LLMは逐次的・直接的推薦といった精度に基づくタスクにおいて適度な熟練度しか示さないことがわかった。
論文 参考訳(メタデータ) (2023-08-23T16:32:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。