Does Reasoning Emerge? Examining the Probabilities of Causation in Large Language Models
- URL: http://arxiv.org/abs/2408.08210v1
- Date: Thu, 15 Aug 2024 15:19:11 GMT
- Title: Does Reasoning Emerge? Examining the Probabilities of Causation in Large Language Models
- Authors: Javier González, Aditya V. Nori,
- Abstract summary: Recent advances in AI have been driven by the capabilities of large language models (LLMs)
This paper introduces a framework that is both theoretical and practical, aimed at assessing how effectively LLMs are able to replicate real-world reasoning mechanisms.
- Score: 6.922021128239465
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advances in AI have been significantly driven by the capabilities of large language models (LLMs) to solve complex problems in ways that resemble human thinking. However, there is an ongoing debate about the extent to which LLMs are capable of actual reasoning. Central to this debate are two key probabilistic concepts that are essential for connecting causes to their effects: the probability of necessity (PN) and the probability of sufficiency (PS). This paper introduces a framework that is both theoretical and practical, aimed at assessing how effectively LLMs are able to replicate real-world reasoning mechanisms using these probabilistic measures. By viewing LLMs as abstract machines that process information through a natural language interface, we examine the conditions under which it is possible to compute suitable approximations of PN and PS. Our research marks an important step towards gaining a deeper understanding of when LLMs are capable of reasoning, as illustrated by a series of math examples.
Related papers
- Language Agents Meet Causality -- Bridging LLMs and Causal World Models [50.79984529172807]
We propose a framework that integrates causal representation learning with large language models.
This framework learns a causal world model, with causal variables linked to natural language expressions.
We evaluate the framework on causal inference and planning tasks across temporal scales and environmental complexities.
arXiv Detail & Related papers (2024-10-25T18:36:37Z) - Make LLMs better zero-shot reasoners: Structure-orientated autonomous reasoning [52.83539473110143]
We introduce a novel structure-oriented analysis method to help Large Language Models (LLMs) better understand a question.
To further improve the reliability in complex question-answering tasks, we propose a multi-agent reasoning system, Structure-oriented Autonomous Reasoning Agents (SARA)
Extensive experiments verify the effectiveness of the proposed reasoning system. Surprisingly, in some cases, the system even surpasses few-shot methods.
arXiv Detail & Related papers (2024-10-18T05:30:33Z) - Large Language Models and the Extended Church-Turing Thesis [0.0]
We investigate the computational power of large language models (LLMs) by the classical means of computability and computational complexity theory.
We show that any fixed (non-adaptive) LLM is computationally equivalent to a, possibly very large, deterministic finite-state transducer.
We discuss the merits of our findings in the broader context of several related disciplines and philosophies.
arXiv Detail & Related papers (2024-09-11T03:09:55Z) - Distributional reasoning in LLMs: Parallel reasoning processes in multi-hop reasoning [8.609587510471943]
We introduce a novel and interpretable analysis of internal multi-hop reasoning processes in large language models.
We show that during inference, the middle layers of the network generate highly interpretable embeddings.
Our findings can help uncover the strategies that LLMs use to solve reasoning tasks, offering insights into the types of thought processes that can emerge from artificial intelligence.
arXiv Detail & Related papers (2024-06-19T21:36:40Z) - Can formal argumentative reasoning enhance LLMs performances? [0.3659498819753633]
We present a pipeline (MQArgEng) to evaluate the effect of introducing computational argumentation semantics on the performance of Large Language Models (LLMs)
Exploratory results indicate that MQArgEng provides a moderate performance gain in most of the examined topical categories and, as such, show promise and warrant further research.
arXiv Detail & Related papers (2024-05-16T22:09:31Z) - LogicBench: Towards Systematic Evaluation of Logical Reasoning Ability of Large Language Models [52.03659714625452]
Recently developed large language models (LLMs) have been shown to perform remarkably well on a wide range of language understanding tasks.
But, can they really "reason" over the natural language?
This question has been receiving significant research attention and many reasoning skills such as commonsense, numerical, and qualitative have been studied.
arXiv Detail & Related papers (2024-04-23T21:08:49Z) - Probabilistic Reasoning in Generative Large Language Models [18.983753573277596]
This paper considers the challenges Large Language Models (LLMs) face when reasoning over text that includes information involving uncertainty explicitly quantified via probability values.
We introduce the Bayesian Linguistic Inference dataset (BLInD), a new dataset designed to test the probabilistic reasoning capabilities of LLMs.
We present several prompting strategies that map the problem to different formal representations, including Python code, probabilistic algorithms, and probabilistic logical programming.
arXiv Detail & Related papers (2024-02-14T23:05:44Z) - Rethinking Interpretability in the Era of Large Language Models [76.1947554386879]
Large language models (LLMs) have demonstrated remarkable capabilities across a wide array of tasks.
The capability to explain in natural language allows LLMs to expand the scale and complexity of patterns that can be given to a human.
These new capabilities raise new challenges, such as hallucinated explanations and immense computational costs.
arXiv Detail & Related papers (2024-01-30T17:38:54Z) - Towards LogiGLUE: A Brief Survey and A Benchmark for Analyzing Logical Reasoning Capabilities of Language Models [56.34029644009297]
Large language models (LLMs) have demonstrated the ability to overcome various limitations of formal Knowledge Representation (KR) systems.
LLMs excel most in abductive reasoning, followed by deductive reasoning, while they are least effective at inductive reasoning.
We study single-task training, multi-task training, and "chain-of-thought" knowledge distillation fine-tuning technique to assess the performance of model.
arXiv Detail & Related papers (2023-10-02T01:00:50Z) - Large Language Models are In-Context Semantic Reasoners rather than
Symbolic Reasoners [75.85554779782048]
Large Language Models (LLMs) have excited the natural language and machine learning community over recent years.
Despite of numerous successful applications, the underlying mechanism of such in-context capabilities still remains unclear.
In this work, we hypothesize that the learned textitsemantics of language tokens do the most heavy lifting during the reasoning process.
arXiv Detail & Related papers (2023-05-24T07:33:34Z) - ThinkSum: Probabilistic reasoning over sets using large language models [18.123895485602244]
We propose a two-stage probabilistic inference paradigm, ThinkSum, which reasons over sets of objects or facts in a structured manner.
We demonstrate the possibilities and advantages of ThinkSum on the BIG-bench suite of LLM evaluation tasks.
arXiv Detail & Related papers (2022-10-04T00:34:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.