Logic programming for deliberative robotic task planning
- URL: http://arxiv.org/abs/2301.07550v1
- Date: Wed, 18 Jan 2023 14:11:55 GMT
- Title: Logic programming for deliberative robotic task planning
- Authors: Daniele Meli, Hirenkumar Nakawala, Paolo Fiorini
- Abstract summary: We present a survey on recent advances in the application of logic programming to the problem of task planning.
We analyze different planners and their suitability for specific robotic applications, based on expressivity in domain representation, computational efficiency and software implementation.
- Score: 2.610470075814367
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Over the last decade, the use of robots in production and daily life has
increased. With increasingly complex tasks and interaction in different
environments including humans, robots are required a higher level of autonomy
for efficient deliberation. Task planning is a key element of deliberation. It
combines elementary operations into a structured plan to satisfy a prescribed
goal, given specifications on the robot and the environment. In this
manuscript, we present a survey on recent advances in the application of logic
programming to the problem of task planning. Logic programming offers several
advantages compared to other approaches, including greater expressivity and
interpretability which may aid in the development of safe and reliable robots.
We analyze different planners and their suitability for specific robotic
applications, based on expressivity in domain representation, computational
efficiency and software implementation. In this way, we support the robotic
designer in choosing the best tool for his application.
Related papers
- COHERENT: Collaboration of Heterogeneous Multi-Robot System with Large Language Models [49.24666980374751]
COHERENT is a novel LLM-based task planning framework for collaboration of heterogeneous multi-robot systems.
A Proposal-Execution-Feedback-Adjustment mechanism is designed to decompose and assign actions for individual robots.
The experimental results show that our work surpasses the previous methods by a large margin in terms of success rate and execution efficiency.
arXiv Detail & Related papers (2024-09-23T15:53:41Z) - Robotic warehousing operations: a learn-then-optimize approach to large-scale neighborhood search [84.39855372157616]
This paper supports robotic parts-to-picker operations in warehousing by optimizing order-workstation assignments, item-pod assignments and the schedule of order fulfillment at workstations.
We solve it via large-scale neighborhood search, with a novel learn-then-optimize approach to subproblem generation.
In collaboration with Amazon Robotics, we show that our model and algorithm generate much stronger solutions for practical problems than state-of-the-art approaches.
arXiv Detail & Related papers (2024-08-29T20:22:22Z) - Autonomous Behavior Planning For Humanoid Loco-manipulation Through Grounded Language Model [6.9268843428933025]
Large language models (LLMs) have demonstrated powerful planning and reasoning capabilities for comprehension and processing of semantic information.
We propose a novel language-model based framework that enables robots to autonomously plan behaviors and low-level execution under given textual instructions.
arXiv Detail & Related papers (2024-08-15T17:33:32Z) - RoboScript: Code Generation for Free-Form Manipulation Tasks across Real
and Simulation [77.41969287400977]
This paper presents textbfRobotScript, a platform for a deployable robot manipulation pipeline powered by code generation.
We also present a benchmark for a code generation benchmark for robot manipulation tasks in free-form natural language.
We demonstrate the adaptability of our code generation framework across multiple robot embodiments, including the Franka and UR5 robot arms.
arXiv Detail & Related papers (2024-02-22T15:12:00Z) - Automated Process Planning Based on a Semantic Capability Model and SMT [50.76251195257306]
In research of manufacturing systems and autonomous robots, the term capability is used for a machine-interpretable specification of a system function.
We present an approach that combines these two topics: starting from a semantic capability model, an AI planning problem is automatically generated.
arXiv Detail & Related papers (2023-12-14T10:37:34Z) - Creative Robot Tool Use with Large Language Models [47.11935262923095]
This paper investigates the feasibility of imbuing robots with the ability to creatively use tools in tasks that involve implicit physical constraints and long-term planning.
We develop RoboTool, a system that accepts natural language instructions and outputs executable code for controlling robots in both simulated and real-world environments.
arXiv Detail & Related papers (2023-10-19T18:02:15Z) - ProgPrompt: Generating Situated Robot Task Plans using Large Language
Models [68.57918965060787]
Large language models (LLMs) can be used to score potential next actions during task planning.
We present a programmatic LLM prompt structure that enables plan generation functional across situated environments.
arXiv Detail & Related papers (2022-09-22T20:29:49Z) - iRoPro: An interactive Robot Programming Framework [2.7651063843287718]
iRoPro allows users with little to no technical background to teach a robot new reusable actions.
We implement iRoPro as an end-to-end system on a Baxter Research Robot.
arXiv Detail & Related papers (2021-12-08T13:53:43Z) - Towards Multi-Robot Task-Motion Planning for Navigation in Belief Space [1.4824891788575418]
We present an integrated multi-robot task-motion planning framework for navigation in knowledge-intensive domains.
In particular, we consider a distributed multi-robot setting incorporating mutual observations between the robots.
The framework is intended for motion planning under motion and sensing uncertainty, which is formally known as belief space planning.
arXiv Detail & Related papers (2020-10-01T06:45:17Z) - Enabling human-like task identification from natural conversation [7.00597813134145]
We provide a non-trivial method to combine an NLP engine and a planner such that a robot can successfully identify tasks and all the relevant parameters and generate an accurate plan for the task.
This work makes a significant stride towards enabling a human-like task understanding capability in a robot.
arXiv Detail & Related papers (2020-08-23T17:19:23Z) - Autonomous Planning Based on Spatial Concepts to Tidy Up Home
Environments with Service Robots [5.739787445246959]
We propose a novel planning method that can efficiently estimate the order and positions of the objects to be tidied up by learning the parameters of a probabilistic generative model.
The model allows a robot to learn the distributions of the co-occurrence probability of the objects and places to tidy up using the multimodal sensor information collected in a tidied environment.
We evaluate the effectiveness of the proposed method by an experimental simulation that reproduces the conditions of the Tidy Up Here task of the World Robot Summit 2018 international robotics competition.
arXiv Detail & Related papers (2020-02-10T11:49:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.