Memory-optimised Cubic Splines for High-fidelity Quantum Operations
- URL: http://arxiv.org/abs/2408.08283v2
- Date: Fri, 16 Aug 2024 11:11:19 GMT
- Title: Memory-optimised Cubic Splines for High-fidelity Quantum Operations
- Authors: Jan Ole Ernst, Jan Snoeijs, Mitchell Peaks, Jochen Wolf,
- Abstract summary: Radio-frequency pulses are widespread for the control of quantum bits and the execution of operations in quantum computers.
The ability to tune key pulse parameters such as time-dependent amplitude, phase, and frequency is essential to achieve maximal gate fidelity and errors.
As systems scale, a larger fraction of the control electronic processing will move closer to the qubits.
This will constrain the space available in the memory of the control electronics to load time-resolved pulse parameters at high sampling rates.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Radio-frequency pulses are widespread for the control of quantum bits and the execution of operations in quantum computers. The ability to tune key pulse parameters such as time-dependent amplitude, phase, and frequency is essential to achieve maximal gate fidelity and mitigate errors. As systems scale, a larger fraction of the control electronic processing will move closer to the qubits, to enhance integration and minimise latency in operations requiring fast feedback. This will constrain the space available in the memory of the control electronics to load time-resolved pulse parameters at high sampling rates. Cubic spline interpolation is a powerful and widespread technique that divides the pulse into segments of cubic polynomials. We show an optimised implementation of this strategy, using a two-stage curve fitting process and additional symmetry operations to load a high-sampling pulse output on an FPGA. This results in a favourable accuracy versus memory footprint trade-off. By simulating single-qubit population transfer and atom transport on a neutral atom device, we show that we can achieve high fidelities with low memory requirements. This is instrumental for scaling up the number of qubits and gate operations in environments where memory is a limited resource.
Related papers
- Enhancing Dispersive Readout of Superconducting Qubits Through Dynamic
Control of the Dispersive Shift: Experiment and Theory [47.00474212574662]
A superconducting qubit is coupled to a large-bandwidth readout resonator.
We show a beyond-state-of-the-art two-state-readout error of only 0.25,%$ in 100 ns integration time.
The presented results are expected to further boost the performance of new and existing algorithms and protocols.
arXiv Detail & Related papers (2023-07-15T10:30:10Z) - Pulse-controlled qubit in semiconductor double quantum dots [57.916342809977785]
We present a numerically-optimized multipulse framework for the quantum control of a single-electron charge qubit.
A novel control scheme manipulates the qubit adiabatically, while also retaining high speed and ability to perform a general single-qubit rotation.
arXiv Detail & Related papers (2023-03-08T19:00:02Z) - Data post-processing for the one-way heterodyne protocol under
composable finite-size security [62.997667081978825]
We study the performance of a practical continuous-variable (CV) quantum key distribution protocol.
We focus on the Gaussian-modulated coherent-state protocol with heterodyne detection in a high signal-to-noise ratio regime.
This allows us to study the performance for practical implementations of the protocol and optimize the parameters connected to the steps above.
arXiv Detail & Related papers (2022-05-20T12:37:09Z) - Scalable High-Performance Fluxonium Quantum Processor [0.0]
We propose a superconducting quantum information processor based on compact high-coherence fluxoniums with suppressed crosstalk.
We numerically investigate the cross resonance controlled-NOT and the differential AC-Stark controlled-Z operations, revealing low gate error for qubit-qubit detuning bandwidth of up to 1 GHz.
arXiv Detail & Related papers (2022-01-23T21:49:04Z) - Suppression of crosstalk in superconducting qubits using dynamical
decoupling [0.0]
Super superconducting quantum processors with interconnected transmon qubits are noisy and prone to various errors.
ZZ-coupling between qubits in fixed frequency transmon architectures is always present and contributes to both coherent and incoherent crosstalk errors.
We propose the use of dynamical decoupling to suppress the crosstalk, and demonstrate the success of this scheme through experiments on several IBM quantum cloud processors.
arXiv Detail & Related papers (2021-08-10T09:16:05Z) - Accurate methods for the analysis of strong-drive effects in parametric
gates [94.70553167084388]
We show how to efficiently extract gate parameters using exact numerics and a perturbative analytical approach.
We identify optimal regimes of operation for different types of gates including $i$SWAP, controlled-Z, and CNOT.
arXiv Detail & Related papers (2021-07-06T02:02:54Z) - Composably secure data processing for Gaussian-modulated continuous
variable quantum key distribution [58.720142291102135]
Continuous-variable quantum key distribution (QKD) employs the quadratures of a bosonic mode to establish a secret key between two remote parties.
We consider a protocol with homodyne detection in the general setting of composable finite-size security.
In particular, we analyze the high signal-to-noise regime which requires the use of high-rate (non-binary) low-density parity check codes.
arXiv Detail & Related papers (2021-03-30T18:02:55Z) - Fast and differentiable simulation of driven quantum systems [58.720142291102135]
We introduce a semi-analytic method based on the Dyson expansion that allows us to time-evolve driven quantum systems much faster than standard numerical methods.
We show results of the optimization of a two-qubit gate using transmon qubits in the circuit QED architecture.
arXiv Detail & Related papers (2020-12-16T21:43:38Z) - Optimization of Broadband $\Lambda$-type Quantum Memory Using Gaussian
Pulses [0.7734726150561088]
We show that for overlapping signal and control fields there exists a unique and broadband pulse duration that optimize the memory efficiency.
We further optimize over the control field temporal delay and pulse duration, demonstrating saturation of this efficiency bound over a broad range of pulse durations.
arXiv Detail & Related papers (2020-08-31T14:19:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.