Efficient Chromatic-Number-Based Multi-Qubit Decoherence and Crosstalk Suppression
- URL: http://arxiv.org/abs/2406.13901v3
- Date: Mon, 27 Jan 2025 00:47:25 GMT
- Title: Efficient Chromatic-Number-Based Multi-Qubit Decoherence and Crosstalk Suppression
- Authors: Amy F. Brown, Daniel A. Lidar,
- Abstract summary: "Chromatic-Hadamard Dynamical Decoupling" (CHaDD) is an approach that efficiently schedules dynamical decoupling pulses for quantum devices with arbitrary qubit connectivity.
We show that CHaDD can become a useful tool for enhancing the performance and scalability of quantum computers.
- Score: 0.0
- License:
- Abstract: The performance of quantum computers is hindered by decoherence and crosstalk, which cause errors and limit the ability to perform long computations. Dynamical decoupling is a technique that alleviates these issues by applying carefully timed pulses to individual qubits, effectively suppressing unwanted interactions. However, as quantum devices grow in size, it becomes increasingly important to minimize the time required to implement dynamical decoupling across the entire system. Here, we present "Chromatic-Hadamard Dynamical Decoupling" (CHaDD), an approach that efficiently schedules dynamical decoupling pulses for quantum devices with arbitrary qubit connectivity. By leveraging Hadamard matrices, CHaDD achieves a circuit depth that scales linearly with the chromatic number of the connectivity graph for general two-qubit interactions, assuming instantaneous pulses. This includes ZZ crosstalk, which is prevalent in superconducting QPUs. CHaDD's scaling represents an exponential improvement over all previous multi-qubit decoupling schemes for devices with connectivity graphs whose chromatic number grows at most polylogarithmically with the number of qubits. For graphs with a constant chromatic number, CHaDD's scaling is independent of the number of qubits. We report on experiments we have conducted using IBM QPUs that confirm the advantage conferred by CHaDD. Our results suggest that CHaDD can become a useful tool for enhancing the performance and scalability of quantum computers by efficiently suppressing decoherence and crosstalk across large qubit arrays.
Related papers
- Memory-optimised Cubic Splines for High-fidelity Quantum Operations [0.0]
Radio-frequency pulses are widespread for the control of quantum bits and the execution of operations in quantum computers.
The ability to tune key pulse parameters such as time-dependent amplitude, phase, and frequency is essential to achieve maximal gate fidelity and errors.
As systems scale, a larger fraction of the control electronic processing will move closer to the qubits.
This will constrain the space available in the memory of the control electronics to load time-resolved pulse parameters at high sampling rates.
arXiv Detail & Related papers (2024-08-15T17:33:37Z) - Field-Based Formalism for Calculating Multi-Qubit Exchange Coupling Rates for Transmon Qubits [0.0]
Superconducting qubits are one of the most mature platforms for quantum computing.
Existing analysis approaches using eigenmode solvers are cumbersome, not robust, and computationally prohibitive if devices with more than a few qubits are to be analyzed.
This work begins the development of an alternative framework that we illustrate in the context of evaluating the qubit-qubit exchange coupling rate between transmon qubits.
arXiv Detail & Related papers (2024-06-08T13:31:18Z) - Syncopated Dynamical Decoupling for Suppressing Crosstalk in Quantum
Circuits [12.29963230632145]
We study the use of dynamical decoupling in characterizing undesired two-qubit couplings and the underlying single-qubit decoherence.
We develop a syncopated decoupling technique which protects against decoherence and selectively targets unwanted two-qubit interactions.
arXiv Detail & Related papers (2024-03-12T17:18:35Z) - Enhancing Dispersive Readout of Superconducting Qubits Through Dynamic
Control of the Dispersive Shift: Experiment and Theory [47.00474212574662]
A superconducting qubit is coupled to a large-bandwidth readout resonator.
We show a beyond-state-of-the-art two-state-readout error of only 0.25,%$ in 100 ns integration time.
The presented results are expected to further boost the performance of new and existing algorithms and protocols.
arXiv Detail & Related papers (2023-07-15T10:30:10Z) - Circuit Cutting with Non-Maximally Entangled States [59.11160990637615]
Distributed quantum computing combines the computational power of multiple devices to overcome the limitations of individual devices.
circuit cutting techniques enable the distribution of quantum computations through classical communication.
Quantum teleportation allows the distribution of quantum computations without an exponential increase in shots.
We propose a novel circuit cutting technique that leverages non-maximally entangled qubit pairs.
arXiv Detail & Related papers (2023-06-21T08:03:34Z) - Pulse-controlled qubit in semiconductor double quantum dots [57.916342809977785]
We present a numerically-optimized multipulse framework for the quantum control of a single-electron charge qubit.
A novel control scheme manipulates the qubit adiabatically, while also retaining high speed and ability to perform a general single-qubit rotation.
arXiv Detail & Related papers (2023-03-08T19:00:02Z) - UNETR++: Delving into Efficient and Accurate 3D Medical Image Segmentation [93.88170217725805]
We propose a 3D medical image segmentation approach, named UNETR++, that offers both high-quality segmentation masks as well as efficiency in terms of parameters, compute cost, and inference speed.
The core of our design is the introduction of a novel efficient paired attention (EPA) block that efficiently learns spatial and channel-wise discriminative features.
Our evaluations on five benchmarks, Synapse, BTCV, ACDC, BRaTs, and Decathlon-Lung, reveal the effectiveness of our contributions in terms of both efficiency and accuracy.
arXiv Detail & Related papers (2022-12-08T18:59:57Z) - Coherent effects contribution to a fast gate fidelity in ion quantum
computer [47.187609203210705]
We develop a numerical model for full simulation of coherence effects using a linear ion microtrap array and a 2D microtrap array.
We have also studied the dependency of the gate fidelity on the laser power fluctuations.
arXiv Detail & Related papers (2021-12-12T12:53:00Z) - Suppression of crosstalk in superconducting qubits using dynamical
decoupling [0.0]
Super superconducting quantum processors with interconnected transmon qubits are noisy and prone to various errors.
ZZ-coupling between qubits in fixed frequency transmon architectures is always present and contributes to both coherent and incoherent crosstalk errors.
We propose the use of dynamical decoupling to suppress the crosstalk, and demonstrate the success of this scheme through experiments on several IBM quantum cloud processors.
arXiv Detail & Related papers (2021-08-10T09:16:05Z) - Designing Kerr Interactions for Quantum Information Processing via
Counterrotating Terms of Asymmetric Josephson-Junction Loops [68.8204255655161]
static cavity nonlinearities typically limit the performance of bosonic quantum error-correcting codes.
Treating the nonlinearity as a perturbation, we derive effective Hamiltonians using the Schrieffer-Wolff transformation.
Results show that a cubic interaction allows to increase the effective rates of both linear and nonlinear operations.
arXiv Detail & Related papers (2021-07-14T15:11:05Z) - Suppressing Coherent Two-Qubit Errors via Dynamical Decoupling [20.280283640450723]
We show how to implement dynamical-decoupling techniques to suppress the two-qubit analogue of the dephasing on a superconducting quantum device.
The pure-dephasing time shows an up to 14 times enhancement on average when using robust sequences.
Our study further reveals the decohering processes associated with tunable couplers and establishes a framework to develop gates and sequences robust against two-qubit errors.
arXiv Detail & Related papers (2021-04-06T16:58:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.