Absence of Closed-Form Descriptions for Gradient Flow in Two-Layer Narrow Networks
- URL: http://arxiv.org/abs/2408.08286v1
- Date: Thu, 15 Aug 2024 17:40:11 GMT
- Title: Absence of Closed-Form Descriptions for Gradient Flow in Two-Layer Narrow Networks
- Authors: Yeachan Park,
- Abstract summary: We show that the dynamics of the gradient flow in two-layer narrow networks is not an integrable system.
Under mild conditions, the identity component of the differential Galois group of the variational equations of the gradient flow is non-solvable.
This result confirms the system's non-integrability and implies that the training dynamics cannot be represented by Liouvillian functions.
- Score: 0.8158530638728501
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In the field of machine learning, comprehending the intricate training dynamics of neural networks poses a significant challenge. This paper explores the training dynamics of neural networks, particularly whether these dynamics can be expressed in a general closed-form solution. We demonstrate that the dynamics of the gradient flow in two-layer narrow networks is not an integrable system. Integrable systems are characterized by trajectories confined to submanifolds defined by level sets of first integrals (invariants), facilitating predictable and reducible dynamics. In contrast, non-integrable systems exhibit complex behaviors that are difficult to predict. To establish the non-integrability, we employ differential Galois theory, which focuses on the solvability of linear differential equations. We demonstrate that under mild conditions, the identity component of the differential Galois group of the variational equations of the gradient flow is non-solvable. This result confirms the system's non-integrability and implies that the training dynamics cannot be represented by Liouvillian functions, precluding a closed-form solution for describing these dynamics. Our findings highlight the necessity of employing numerical methods to tackle optimization problems within neural networks. The results contribute to a deeper understanding of neural network training dynamics and their implications for machine learning optimization strategies.
Related papers
- Dynamical stability and chaos in artificial neural network trajectories along training [3.379574469735166]
We study the dynamical properties of this process by analyzing through this lens the network trajectories of a shallow neural network.
We find hints of regular and chaotic behavior depending on the learning rate regime.
This work also contributes to the cross-fertilization of ideas between dynamical systems theory, network theory and machine learning.
arXiv Detail & Related papers (2024-04-08T17:33:11Z) - On the Dynamics Under the Unhinged Loss and Beyond [104.49565602940699]
We introduce the unhinged loss, a concise loss function, that offers more mathematical opportunities to analyze closed-form dynamics.
The unhinged loss allows for considering more practical techniques, such as time-vary learning rates and feature normalization.
arXiv Detail & Related papers (2023-12-13T02:11:07Z) - Understanding Multi-phase Optimization Dynamics and Rich Nonlinear
Behaviors of ReLU Networks [8.180184504355571]
We conduct a theoretical characterization of the training process of two-layer ReLU network trained by Gradient Flow on a linearlyparable data.
We reveal four different phases from the whole training process showing a general simplifying-to-complicating learning trend.
Specific nonlinear behaviors can also be precisely identified captured theoretically, such as initial, saddle-plateau dynamics, condensation escape, changes of activation patterns with increasing complexity.
arXiv Detail & Related papers (2023-05-21T14:08:34Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
Physics-informed neural networks (PINNs) have effectively been demonstrated in solving forward and inverse differential equation problems.
PINNs are trapped in training failures when the target functions to be approximated exhibit high-frequency or multi-scale features.
In this paper, we propose to employ implicit gradient descent (ISGD) method to train PINNs for improving the stability of training process.
arXiv Detail & Related papers (2023-03-03T08:17:47Z) - Neural Galerkin Schemes with Active Learning for High-Dimensional
Evolution Equations [44.89798007370551]
This work proposes Neural Galerkin schemes based on deep learning that generate training data with active learning for numerically solving high-dimensional partial differential equations.
Neural Galerkin schemes build on the Dirac-Frenkel variational principle to train networks by minimizing the residual sequentially over time.
Our finding is that the active form of gathering training data of the proposed Neural Galerkin schemes is key for numerically realizing the expressive power of networks in high dimensions.
arXiv Detail & Related papers (2022-03-02T19:09:52Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Physics informed neural networks for continuum micromechanics [68.8204255655161]
Recently, physics informed neural networks have successfully been applied to a broad variety of problems in applied mathematics and engineering.
Due to the global approximation, physics informed neural networks have difficulties in displaying localized effects and strong non-linear solutions by optimization.
It is shown, that the domain decomposition approach is able to accurately resolve nonlinear stress, displacement and energy fields in heterogeneous microstructures obtained from real-world $mu$CT-scans.
arXiv Detail & Related papers (2021-10-14T14:05:19Z) - Locally-symplectic neural networks for learning volume-preserving
dynamics [0.0]
We propose locally-symplectic neural networks LocSympNets for learning volume-preserving dynamics.
The construction of LocSympNets stems from the theorem of local Hamiltonian description of the vector field of a volume-preserving dynamical system.
arXiv Detail & Related papers (2021-09-19T15:58:09Z) - Gradient Starvation: A Learning Proclivity in Neural Networks [97.02382916372594]
Gradient Starvation arises when cross-entropy loss is minimized by capturing only a subset of features relevant for the task.
This work provides a theoretical explanation for the emergence of such feature imbalance in neural networks.
arXiv Detail & Related papers (2020-11-18T18:52:08Z) - Continuous-in-Depth Neural Networks [107.47887213490134]
We first show that ResNets fail to be meaningful dynamical in this richer sense.
We then demonstrate that neural network models can learn to represent continuous dynamical systems.
We introduce ContinuousNet as a continuous-in-depth generalization of ResNet architectures.
arXiv Detail & Related papers (2020-08-05T22:54:09Z) - Implicit Bias of Gradient Descent for Wide Two-layer Neural Networks
Trained with the Logistic Loss [0.0]
Neural networks trained to minimize the logistic (a.k.a. cross-entropy) loss with gradient-based methods are observed to perform well in many supervised classification tasks.
We analyze the training and generalization behavior of infinitely wide two-layer neural networks with homogeneous activations.
arXiv Detail & Related papers (2020-02-11T15:42:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.