A Short Guide to Quantum Mechanics -- Some Basic Principles
- URL: http://arxiv.org/abs/2408.08324v1
- Date: Thu, 1 Aug 2024 17:14:54 GMT
- Title: A Short Guide to Quantum Mechanics -- Some Basic Principles
- Authors: Joachim Stolze,
- Abstract summary: It starts by asking whether quantum physics is important, or weird, or incomprehensible.
It explains why particles sometimes behave like waves, and how uncertainty and randomness enter physics.
Modern topics, like magnetic resonance imaging (MRI) and quantum computing are also covered.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This introductory text on the basics of quantum mechanics is intended to serve as a kind of travel guide through the quantum world. It starts by asking whether quantum physics is important, or weird, or incomprehensible. It explains why particles sometimes behave like waves, and how uncertainty and randomness enter physics, before explaining a number of historically important experiments. Modern topics, like magnetic resonance imaging (MRI) and quantum computing are also covered. Essential concepts, such as the uncertainty principle, are analyzed in depth, employing a slightly increased dose of mathematics. This is the English version of the first part of a manual intended as a companion to the "Treffpunkt Quantenmechanik" (meeting point quantum mechanics), a laboratory at TU Dortmund University, where high-school students can get acquainted with the wonderful world of quantum physics. The second part of the manual contains detailed instructions for the individual experiments available in the lab and is not available on the Internet.
Related papers
- Quantum decoherence from complex saddle points [0.0]
Quantum decoherence is the effect that bridges quantum physics to classical physics.
We present some first-principle calculations in the Caldeira-Leggett model.
We also discuss how to extend our work to general models by Monte Carlo calculations.
arXiv Detail & Related papers (2024-08-29T15:35:25Z) - A computational test of quantum contextuality, and even simpler proofs of quantumness [43.25018099464869]
We show that an arbitrary contextuality game can be compiled into an operational "test of contextuality" involving a single quantum device.
Our work can be seen as using cryptography to enforce spatial separation within subsystems of a single quantum device.
arXiv Detail & Related papers (2024-05-10T19:30:23Z) - A Theory of Quantum Jumps [44.99833362998488]
We study fluorescence and the phenomenon of quantum jumps'' in idealized models of atoms coupled to the quantized electromagnetic field.
Our results amount to a derivation of the fundamental randomness in the quantum-mechanical description of microscopic systems.
arXiv Detail & Related papers (2024-04-16T11:00:46Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - Schr\"odinger cat states of a 16-microgram mechanical oscillator [54.35850218188371]
The superposition principle is one of the most fundamental principles of quantum mechanics.
Here we demonstrate the preparation of a mechanical resonator with an effective mass of 16.2 micrograms in Schr"odinger cat states of motion.
We show control over the size and phase of the superposition and investigate the decoherence dynamics of these states.
arXiv Detail & Related papers (2022-11-01T13:29:44Z) - Hello Quantum World! A rigorous but accessible first-year university
course in quantum information science [0.0]
Hello Quantum World! introduces a broad range of fundamental quantum information and computation concepts.
Some of the topics covered include superposition, entanglement, quantum gates, teleportation, quantum algorithms, and quantum error correction.
arXiv Detail & Related papers (2022-09-25T18:59:47Z) - Introduction to Quantum Optics [0.0]
This course is designed for students who have only had basic training on quantum mechanics.
The notes are a work in progress, meaning that some proofs and many figures are still missing.
Quantum optics is a topic that no future researcher in quantum physics should miss.
arXiv Detail & Related papers (2022-03-20T14:42:46Z) - Quantum tomography explains quantum mechanics [0.0]
A suggestive notion for what constitutes a quantum detector leads to a logically impeccable definition of measurement.
The various forms of quantum tomography for quantum states, quantum detectors, quantum processes, and quantum instruments are discussed.
The new approach is closer to actual practice than the traditional foundations.
arXiv Detail & Related papers (2021-10-11T14:09:30Z) - Quantum Physics without the Physics [0.0]
It was written by a group of applied mathematicians while they were reading up on the subject.
The intended audience consists of applied mathematicians, computer scientists, or anyone else who wants to improve their understanding of quantum physics.
arXiv Detail & Related papers (2020-12-07T17:20:34Z) - Quantum Hall phase emerging in an array of atoms interacting with
photons [101.18253437732933]
Topological quantum phases underpin many concepts of modern physics.
Here, we reveal that the quantum Hall phase with topological edge states, spectral Landau levels and Hofstadter butterfly can emerge in a simple quantum system.
Such systems, arrays of two-level atoms (qubits) coupled to light being described by the classical Dicke model, have recently been realized in experiments with cold atoms and superconducting qubits.
arXiv Detail & Related papers (2020-03-18T14:56:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.