"Thinking Quantum": Lectures on Quantum Theory
- URL: http://arxiv.org/abs/1803.07098v4
- Date: Mon, 14 Apr 2025 07:34:06 GMT
- Title: "Thinking Quantum": Lectures on Quantum Theory
- Authors: Barak Shoshany,
- Abstract summary: The lectures are completely self-contained, including all the necessary mathematical background.<n>They cover topics such as the axioms of quantum theory, qubits, superposition, entanglement, the uncertainty principle, quantum gates, unitary transformations and evolution.<n>The lectures also contain 163 computational exercises and proof-based problems.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a conceptually clear introduction to quantum theory, deriving the theory from scratch from the point of view of quantum information. Different subsets of these lectures were taught to a wide variety of audiences, including exceptional high-school students in the International Summer School for Young Physicists (ISSYP) at Perimeter Institute, 2nd-year physics undergraduates at the University of Toronto, and 4th-year physics and math undergraduate and graduate students at Brock University. The lectures are completely self-contained, including all the necessary mathematical background: complex numbers, linear algebra, and probability theory. They cover topics such as the axioms of quantum theory, qubits, superposition, entanglement, the uncertainty principle, quantum gates, unitary transformations and evolution, interpretations of quantum mechanics, the no-cloning theorem, quantum teleportation, quantum algorithms, Hamiltonians, the Schrodinger equation, canonical and path integral quantization, quantum harmonic oscillators, wavefunctions, and much more. The lectures also contain 163 computational exercises and proof-based problems.
Related papers
- Semiclassical gravity phenomenology under the causal-conditional quantum measurement prescription II: Heisenberg picture and apparent optical entanglement [13.04737397490371]
In quantum gravity theory, a state-dependent gravitational potential introduces nonlinearity into the state evolution.
The formalism for understanding the continuous quantum measurement process on the quantum state has been previously discussed using the Schr"odinger picture.
In this work, an equivalent formalism using the Heisenberg picture is developed and applied to the analysis of two optomechanical experiment protocols.
arXiv Detail & Related papers (2024-11-08T14:07:18Z) - A Short Guide to Quantum Mechanics -- Some Basic Principles [0.0]
It starts by asking whether quantum physics is important, or weird, or incomprehensible.
It explains why particles sometimes behave like waves, and how uncertainty and randomness enter physics.
Modern topics, like magnetic resonance imaging (MRI) and quantum computing are also covered.
arXiv Detail & Related papers (2024-08-01T17:14:54Z) - Lecture Notes on Quantum Electrical Circuits [49.86749884231445]
Theory of quantum electrical circuits goes under the name of circuit quantum electrodynamics or circuit-QED.
The goal of the theory is to provide a quantum description of the most relevant degrees of freedom.
These lecture notes aim at giving a pedagogical overview of this subject for theoretically-oriented Master or PhD students in physics and electrical engineering.
arXiv Detail & Related papers (2023-12-08T19:26:34Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Hello Quantum World! A rigorous but accessible first-year university
course in quantum information science [0.0]
Hello Quantum World! introduces a broad range of fundamental quantum information and computation concepts.
Some of the topics covered include superposition, entanglement, quantum gates, teleportation, quantum algorithms, and quantum error correction.
arXiv Detail & Related papers (2022-09-25T18:59:47Z) - Quantum computations (course of lectures) [0.0]
The course is devoted to a new type of computations based on quantum mechanics.
Various forms of quantum computing are considered: the Feynman gate model, fermionic and adiabatic computations.
arXiv Detail & Related papers (2021-07-16T10:12:18Z) - Ruling out real-valued standard formalism of quantum theory [19.015836913247288]
A quantum game has been developed to distinguish standard quantum theory from its real-number analog.
We experimentally implement the quantum game based on entanglement swapping with a state-of-the-art fidelity of 0.952(1).
Our results disprove the real-number formulation and establish the indispensable role of complex numbers in the standard quantum theory.
arXiv Detail & Related papers (2021-03-15T03:56:13Z) - Experimental Validation of Fully Quantum Fluctuation Theorems Using
Dynamic Bayesian Networks [48.7576911714538]
Fluctuation theorems are fundamental extensions of the second law of thermodynamics for small systems.
We experimentally verify detailed and integral fully quantum fluctuation theorems for heat exchange using two quantum-correlated thermal spins-1/2 in a nuclear magnetic resonance setup.
arXiv Detail & Related papers (2020-12-11T12:55:17Z) - Quantum Information for Particle Theorists [0.0]
Lectures given at the Theoretical Advanced Study Institute (TASI 2020), 1-26 June 2020.
The topics covered include quantum circuits, entanglement, quantum teleportation, Bell inequalities, quantum entropy and decoherence.
Links to a Python notebook and Mathematica notebooks will allow the reader to reproduce and extend the calculations, as well as perform five experiments on a quantum simulator.
arXiv Detail & Related papers (2020-10-06T18:00:02Z) - Preferred basis, decoherence and a quantum state of the Universe [77.34726150561087]
We review a number of issues in foundations of quantum theory and quantum cosmology.
These issues can be considered as a part of the scientific legacy of H.D. Zeh.
arXiv Detail & Related papers (2020-06-28T18:07:59Z) - Quantum key distribution based on the quantum eraser [0.0]
Quantum information and quantum foundations are becoming popular topics for advanced undergraduate courses.
We show that the quantum eraser, usually used to study the duality between wave and particle properties, can also serve as a generic platform for quantum key distribution.
arXiv Detail & Related papers (2019-07-07T10:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.