論文の概要: Exploring Latent Space for Generating Peptide Analogs Using Protein Language Models
- arxiv url: http://arxiv.org/abs/2408.08341v1
- Date: Thu, 15 Aug 2024 13:37:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-19 17:29:47.414611
- Title: Exploring Latent Space for Generating Peptide Analogs Using Protein Language Models
- Title(参考訳): タンパク質言語モデルを用いたペプチドアナログ生成のための潜在空間探索
- Authors: Po-Yu Liang, Xueting Huang, Tibo Duran, Andrew J. Wiemer, Jun Bai,
- Abstract要約: 提案手法は,大規模データセットの必要を回避し,関心の連続を1つだけ要求する。
ペプチド構造, 転写因子, 生体活性の類似度指標では, ベースラインモデルよりも有意に改善した。
- 参考スコア(独自算出の注目度): 1.5146068448101742
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generating peptides with desired properties is crucial for drug discovery and biotechnology. Traditional sequence-based and structure-based methods often require extensive datasets, which limits their effectiveness. In this study, we proposed a novel method that utilized autoencoder shaped models to explore the protein embedding space, and generate novel peptide analogs by leveraging protein language models. The proposed method requires only a single sequence of interest, avoiding the need for large datasets. Our results show significant improvements over baseline models in similarity indicators of peptide structures, descriptors and bioactivities. The proposed method validated through Molecular Dynamics simulations on TIGIT inhibitors, demonstrates that our method produces peptide analogs with similar yet distinct properties, highlighting its potential to enhance peptide screening processes.
- Abstract(参考訳): 望ましい性質を持つペプチドの生成は、医薬品の発見とバイオテクノロジーにとって不可欠である。
伝統的なシーケンスベースおよび構造ベースの手法は、しばしば広範囲なデータセットを必要とするため、その有効性は制限される。
本研究では, 自己エンコーダ型モデルを用いてタンパク質の埋め込み空間を探索し, タンパク質言語モデルを利用して新規ペプチドアナログを生成する手法を提案する。
提案手法は,大規模データセットの必要を回避し,関心の連続を1つだけ要求する。
ペプチド構造, 転写因子, 生体活性の類似度指標では, ベースラインモデルよりも有意に改善した。
提案法は, TIGIT阻害剤の分子動力学シミュレーションにより, 同様の性質のペプチドアナログが生成され, ペプチドスクリーニングプロセスが促進される可能性が示された。
関連論文リスト
- SFM-Protein: Integrative Co-evolutionary Pre-training for Advanced Protein Sequence Representation [97.99658944212675]
タンパク質基盤モデルのための新しい事前学習戦略を導入する。
アミノ酸残基間の相互作用を強調し、短距離および長距離の共進化的特徴の抽出を強化する。
大規模タンパク質配列データセットを用いて学習し,より優れた一般化能力を示す。
論文 参考訳(メタデータ) (2024-10-31T15:22:03Z) - Structure Language Models for Protein Conformation Generation [66.42864253026053]
伝統的な物理学に基づくシミュレーション手法は、しばしばサンプリング平衡整合に苦しむ。
深い生成モデルは、より効率的な代替としてタンパク質のコンホメーションを生成することを約束している。
本稿では,効率的なタンパク質コンホメーション生成のための新しいフレームワークとして構造言語モデリングを紹介する。
論文 参考訳(メタデータ) (2024-10-24T03:38:51Z) - Multi-Peptide: Multimodality Leveraged Language-Graph Learning of Peptide Properties [5.812284760539713]
Multi-Peptideは、トランスフォーマーベースの言語モデルとグラフニューラルネットワーク(GNN)を組み合わせてペプチドの性質を予測する革新的なアプローチである。
溶血性データセットおよび非汚泥性データセットの評価は、多ペプチドの堅牢性を示し、溶血性予測における最先端86.185%の精度を達成する。
本研究は, 生体情報学におけるマルチモーダル学習の可能性を強調し, ペプチドを用いた研究・応用における正確かつ信頼性の高い予測方法を模索する。
論文 参考訳(メタデータ) (2024-07-02T20:13:47Z) - NovoBench: Benchmarking Deep Learning-based De Novo Peptide Sequencing Methods in Proteomics [58.03989832372747]
Emphde novoペプチドシークエンシングのための初となるNovoBenchベンチマークを報告する。
多様な質量スペクトルデータ、統合モデル、総合的な評価指標から構成される。
DeepNovo、PointNovo、Casanovo、InstaNovo、AdaNovo、$pi$-HelixNovoといった最近の手法が私たちのフレームワークに統合されています。
論文 参考訳(メタデータ) (2024-06-16T08:23:21Z) - Boosting Protein Language Models with Negative Sample Mining [20.721167029530168]
本稿では,タンパク質表現学習分野における大規模言語モデル向上のための先駆的手法を提案する。
私たちの主な貢献は、共進化の知識への過度な信頼を関連付けるための洗練プロセスにあります。
本手法は,この新たなアプローチを活かして,注目スコア空間内でのトランスフォーマーベースモデルのトレーニングを支援する。
論文 参考訳(メタデータ) (2024-05-28T07:24:20Z) - Efficient Prediction of Peptide Self-assembly through Sequential and
Graphical Encoding [57.89530563948755]
この研究は、高度なディープラーニングモデルを用いたペプチドエンコーディングのベンチマーク分析を提供する。
等電点や水和自由エネルギーなど、幅広いペプチド関連予測のガイドとして機能する。
論文 参考訳(メタデータ) (2023-07-17T00:43:33Z) - Predicting protein variants with equivariant graph neural networks [0.0]
我々は,同変グラフニューラルネットワーク(EGNN)と配列に基づくアプローチによる有望なアミノ酸変異の同定能力の比較を行った。
提案する構造的アプローチは, より少ない分子で訓練しながら, 配列に基づくアプローチと競合する性能を実現する。
論文 参考訳(メタデータ) (2023-06-21T12:44:52Z) - Retrieval-based Controllable Molecule Generation [63.44583084888342]
制御可能な分子生成のための検索に基づく新しいフレームワークを提案する。
我々は、与えられた設計基準を満たす分子の合成に向けて、事前学習された生成モデルを操るために、分子の小さなセットを使用します。
提案手法は生成モデルの選択に非依存であり,タスク固有の微調整は不要である。
論文 参考訳(メタデータ) (2022-08-23T17:01:16Z) - Learning Geometrically Disentangled Representations of Protein Folding
Simulations [72.03095377508856]
この研究は、薬物標的タンパク質の構造的アンサンブルに基づいて生成ニューラルネットワークを学習することに焦点を当てている。
モデル課題は、様々な薬物分子に結合したタンパク質の構造的変動を特徴付けることである。
その結果,我々の幾何学的学習に基づく手法は,複雑な構造変化を生成するための精度と効率の両方を享受できることがわかった。
論文 参考訳(メタデータ) (2022-05-20T19:38:00Z) - Interpretable Structured Learning with Sparse Gated Sequence Encoder for
Protein-Protein Interaction Prediction [2.9488233765621295]
アミノ酸配列から情報表現を学習することでタンパク質-タンパク質相互作用(PPI)を予測することは、生物学において難しいが重要な問題である。
我々は、シーケンスのみからPPIをモデル化し、予測するための新しいディープフレームワークを提案する。
本モデルでは,シーケンスからコンテキスト化およびシーケンシャル情報を活用することによってシーケンス表現を学習するための双方向ゲート再帰ユニットを組み込んだ。
論文 参考訳(メタデータ) (2020-10-16T17:13:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。