Exploring Latent Space for Generating Peptide Analogs Using Protein Language Models
- URL: http://arxiv.org/abs/2408.08341v1
- Date: Thu, 15 Aug 2024 13:37:27 GMT
- Title: Exploring Latent Space for Generating Peptide Analogs Using Protein Language Models
- Authors: Po-Yu Liang, Xueting Huang, Tibo Duran, Andrew J. Wiemer, Jun Bai,
- Abstract summary: The proposed method requires only a single sequence of interest, avoiding the need for large datasets.
Our results show significant improvements over baseline models in similarity indicators of peptide structures, descriptors and bioactivities.
- Score: 1.5146068448101742
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generating peptides with desired properties is crucial for drug discovery and biotechnology. Traditional sequence-based and structure-based methods often require extensive datasets, which limits their effectiveness. In this study, we proposed a novel method that utilized autoencoder shaped models to explore the protein embedding space, and generate novel peptide analogs by leveraging protein language models. The proposed method requires only a single sequence of interest, avoiding the need for large datasets. Our results show significant improvements over baseline models in similarity indicators of peptide structures, descriptors and bioactivities. The proposed method validated through Molecular Dynamics simulations on TIGIT inhibitors, demonstrates that our method produces peptide analogs with similar yet distinct properties, highlighting its potential to enhance peptide screening processes.
Related papers
- SFM-Protein: Integrative Co-evolutionary Pre-training for Advanced Protein Sequence Representation [97.99658944212675]
We introduce a novel pre-training strategy for protein foundation models.
It emphasizes the interactions among amino acid residues to enhance the extraction of both short-range and long-range co-evolutionary features.
Trained on a large-scale protein sequence dataset, our model demonstrates superior generalization ability.
arXiv Detail & Related papers (2024-10-31T15:22:03Z) - Structure Language Models for Protein Conformation Generation [66.42864253026053]
Traditional physics-based simulation methods often struggle with sampling equilibrium conformations.
Deep generative models have shown promise in generating protein conformations as a more efficient alternative.
We introduce Structure Language Modeling as a novel framework for efficient protein conformation generation.
arXiv Detail & Related papers (2024-10-24T03:38:51Z) - Multi-Peptide: Multimodality Leveraged Language-Graph Learning of Peptide Properties [5.812284760539713]
Multi-Peptide is an innovative approach that combines transformer-based language models with Graph Neural Networks (GNNs) to predict peptide properties.
Evaluations on hemolysis and nonfouling datasets demonstrate Multi-Peptide's robustness, achieving state-of-the-art 86.185% accuracy in hemolysis prediction.
This study highlights the potential of multimodal learning in bioinformatics, paving the way for accurate and reliable predictions in peptide-based research and applications.
arXiv Detail & Related papers (2024-07-02T20:13:47Z) - NovoBench: Benchmarking Deep Learning-based De Novo Peptide Sequencing Methods in Proteomics [58.03989832372747]
We present the first unified benchmark NovoBench for emphde novo peptide sequencing.
It comprises diverse mass spectrum data, integrated models, and comprehensive evaluation metrics.
Recent methods, including DeepNovo, PointNovo, Casanovo, InstaNovo, AdaNovo and $pi$-HelixNovo are integrated into our framework.
arXiv Detail & Related papers (2024-06-16T08:23:21Z) - Boosting Protein Language Models with Negative Sample Mining [20.721167029530168]
We introduce a pioneering methodology for boosting large language models in the domain of protein representation learning.
Our primary contribution lies in the refinement process for correlating the over-reliance on co-evolution knowledge.
By capitalizing on this novel approach, our technique steers the training of transformer-based models within the attention score space.
arXiv Detail & Related papers (2024-05-28T07:24:20Z) - Efficient Prediction of Peptide Self-assembly through Sequential and
Graphical Encoding [57.89530563948755]
This work provides a benchmark analysis of peptide encoding with advanced deep learning models.
It serves as a guide for a wide range of peptide-related predictions such as isoelectric points, hydration free energy, etc.
arXiv Detail & Related papers (2023-07-17T00:43:33Z) - Predicting protein variants with equivariant graph neural networks [0.0]
We compare the abilities of equivariant graph neural networks (EGNNs) and sequence-based approaches to identify promising amino-acid mutations.
Our proposed structural approach achieves a competitive performance to sequence-based approaches while being trained on significantly fewer molecules.
arXiv Detail & Related papers (2023-06-21T12:44:52Z) - Retrieval-based Controllable Molecule Generation [63.44583084888342]
We propose a new retrieval-based framework for controllable molecule generation.
We use a small set of molecules to steer the pre-trained generative model towards synthesizing molecules that satisfy the given design criteria.
Our approach is agnostic to the choice of generative models and requires no task-specific fine-tuning.
arXiv Detail & Related papers (2022-08-23T17:01:16Z) - Learning Geometrically Disentangled Representations of Protein Folding
Simulations [72.03095377508856]
This work focuses on learning a generative neural network on a structural ensemble of a drug-target protein.
Model tasks involve characterizing the distinct structural fluctuations of the protein bound to various drug molecules.
Results show that our geometric learning-based method enjoys both accuracy and efficiency for generating complex structural variations.
arXiv Detail & Related papers (2022-05-20T19:38:00Z) - Interpretable Structured Learning with Sparse Gated Sequence Encoder for
Protein-Protein Interaction Prediction [2.9488233765621295]
Predicting protein-protein interactions (PPIs) by learning informative representations from amino acid sequences is a challenging yet important problem in biology.
We present a novel deep framework to model and predict PPIs from sequence alone.
Our model incorporates a bidirectional gated recurrent unit to learn sequence representations by leveraging contextualized and sequential information from sequences.
arXiv Detail & Related papers (2020-10-16T17:13:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.