GS-ID: Illumination Decomposition on Gaussian Splatting via Adaptive Light Aggregation and Diffusion-Guided Material Priors
- URL: http://arxiv.org/abs/2408.08524v2
- Date: Mon, 04 Aug 2025 06:50:43 GMT
- Title: GS-ID: Illumination Decomposition on Gaussian Splatting via Adaptive Light Aggregation and Diffusion-Guided Material Priors
- Authors: Kang Du, Zhihao Liang, Yulin Shen, Zeyu Wang,
- Abstract summary: Gaussian Splatting (GS) has emerged as an effective representation for rendering, but the underlying geometry, material, and lighting remain entangled.<n>We propose textbfGS-ID, an end-to-end framework for illumination decomposition.<n> Experiments demonstrate the effectiveness of GS-ID for downstream applications such as relighting and scene composition.
- Score: 5.7153963416911
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Gaussian Splatting (GS) has emerged as an effective representation for photorealistic rendering, but the underlying geometry, material, and lighting remain entangled, hindering scene editing. Existing GS-based methods struggle to disentangle these components under non-Lambertian conditions, especially in the presence of specularities and shadows. We propose \textbf{GS-ID}, an end-to-end framework for illumination decomposition that integrates adaptive light aggregation with diffusion-based material priors. In addition to a learnable environment map for ambient illumination, we model spatially-varying local lighting using anisotropic spherical Gaussian mixtures (SGMs) that are jointly optimized with scene content. To better capture cast shadows, we associate each splat with a learnable unit vector that encodes shadow directions from multiple light sources, further improving material and lighting estimation. By combining SGMs with intrinsic priors from diffusion models, GS-ID significantly reduces ambiguity in light-material-geometry interactions and achieves state-of-the-art performance on inverse rendering and relighting benchmarks. Experiments also demonstrate the effectiveness of GS-ID for downstream applications such as relighting and scene composition.
Related papers
- SAIGFormer: A Spatially-Adaptive Illumination-Guided Network for Low-Light Image Enhancement [58.79901582809091]
Recent Transformer-based low-light enhancement methods have made promising progress in recovering global illumination.<n>Recent Transformer-based low-light enhancement methods have made promising progress in recovering global illumination.<n>We present a Spatially-Adaptive Illumination-Guided Transformer framework that enables accurate illumination restoration.
arXiv Detail & Related papers (2025-07-21T11:38:56Z) - GaSLight: Gaussian Splats for Spatially-Varying Lighting in HDR [21.37244988135805]
GaSLight is a method that generates spatially-varying lighting from regular images.
We employ Gaussian Splats to model 3D lighting, achieving spatially variant lighting.
Our approach yields state-of-the-art results on HDR estimations.
arXiv Detail & Related papers (2025-04-15T02:08:42Z) - GUS-IR: Gaussian Splatting with Unified Shading for Inverse Rendering [83.69136534797686]
We present GUS-IR, a novel framework designed to address the inverse rendering problem for complicated scenes featuring rough and glossy surfaces.
This paper starts by analyzing and comparing two prominent shading techniques popularly used for inverse rendering, forward shading and deferred shading.
We propose a unified shading solution that combines the advantages of both techniques for better decomposition.
arXiv Detail & Related papers (2024-11-12T01:51:05Z) - GeoSplatting: Towards Geometry Guided Gaussian Splatting for Physically-based Inverse Rendering [69.67264955234494]
GeoSplatting is a novel approach that augments 3DGS with explicit geometry guidance for precise light transport modeling.<n>By differentiably constructing a surface-grounded 3DGS from an optimizable mesh, our approach leverages well-defined mesh normals and the opaque mesh surface.<n>This enhancement ensures precise material decomposition while preserving the efficiency and high-quality rendering capabilities of 3DGS.
arXiv Detail & Related papers (2024-10-31T17:57:07Z) - RelitLRM: Generative Relightable Radiance for Large Reconstruction Models [52.672706620003765]
We propose RelitLRM for generating high-quality Gaussian splatting representations of 3D objects under novel illuminations.
Unlike prior inverse rendering methods requiring dense captures and slow optimization, RelitLRM adopts a feed-forward transformer-based model.
We show our sparse-view feed-forward RelitLRM offers competitive relighting results to state-of-the-art dense-view optimization-based baselines.
arXiv Detail & Related papers (2024-10-08T17:40:01Z) - GI-GS: Global Illumination Decomposition on Gaussian Splatting for Inverse Rendering [6.820642721852439]
We present GI-GS, a novel inverse rendering framework that leverages 3D Gaussian Splatting (3DGS) and deferred shading.
In our framework, we first render a G-buffer to capture the detailed geometry and material properties of the scene.
With the G-buffer and previous rendering results, the indirect lighting can be calculated through a lightweight path tracing.
arXiv Detail & Related papers (2024-10-03T15:58:18Z) - GS-Phong: Meta-Learned 3D Gaussians for Relightable Novel View Synthesis [63.5925701087252]
We propose a novel method for representing a scene illuminated by a point light using a set of relightable 3D Gaussian points.
Inspired by the Blinn-Phong model, our approach decomposes the scene into ambient, diffuse, and specular components.
To facilitate the decomposition of geometric information independent of lighting conditions, we introduce a novel bilevel optimization-based meta-learning framework.
arXiv Detail & Related papers (2024-05-31T13:48:54Z) - NieR: Normal-Based Lighting Scene Rendering [17.421326290704844]
NieR (Normal-Based Lighting Scene Rendering) is a novel framework that takes into account the nuances of light reflection on diverse material surfaces.
We present the LD (Light Decomposition) module, which captures the lighting reflection characteristics on surfaces.
We also propose the HNGD (Hierarchical Normal Gradient Densification) module to overcome the limitations of sparse Gaussian representation.
arXiv Detail & Related papers (2024-05-21T14:24:43Z) - MixLight: Borrowing the Best of both Spherical Harmonics and Gaussian Models [69.39388799906409]
Existing works estimate illumination by generating illumination maps or regressing illumination parameters.
This paper presents MixLight, a joint model that utilizes the complementary characteristics of SH and SG to achieve a more complete illumination representation.
arXiv Detail & Related papers (2024-04-19T10:17:10Z) - DeferredGS: Decoupled and Editable Gaussian Splatting with Deferred Shading [50.331929164207324]
We introduce DeferredGS, a method for decoupling and editing the Gaussian splatting representation using deferred shading.
Both qualitative and quantitative experiments demonstrate the superior performance of DeferredGS in novel view and editing tasks.
arXiv Detail & Related papers (2024-04-15T01:58:54Z) - GIR: 3D Gaussian Inverse Rendering for Relightable Scene Factorization [62.13932669494098]
This paper presents a 3D Gaussian Inverse Rendering (GIR) method, employing 3D Gaussian representations to factorize the scene into material properties, light, and geometry.
We compute the normal of each 3D Gaussian using the shortest eigenvector, with a directional masking scheme forcing accurate normal estimation without external supervision.
We adopt an efficient voxel-based indirect illumination tracing scheme that stores direction-aware outgoing radiance in each 3D Gaussian to disentangle secondary illumination for approximating multi-bounce light transport.
arXiv Detail & Related papers (2023-12-08T16:05:15Z) - GS-IR: 3D Gaussian Splatting for Inverse Rendering [71.14234327414086]
We propose GS-IR, a novel inverse rendering approach based on 3D Gaussian Splatting (GS)
We extend GS, a top-performance representation for novel view synthesis, to estimate scene geometry, surface material, and environment illumination from multi-view images captured under unknown lighting conditions.
The flexible and expressive GS representation allows us to achieve fast and compact geometry reconstruction, photorealistic novel view synthesis, and effective physically-based rendering.
arXiv Detail & Related papers (2023-11-26T02:35:09Z) - NeFII: Inverse Rendering for Reflectance Decomposition with Near-Field
Indirect Illumination [48.42173911185454]
Inverse rendering methods aim to estimate geometry, materials and illumination from multi-view RGB images.
We propose an end-to-end inverse rendering pipeline that decomposes materials and illumination from multi-view images.
arXiv Detail & Related papers (2023-03-29T12:05:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.