論文の概要: CommunityKG-RAG: Leveraging Community Structures in Knowledge Graphs for Advanced Retrieval-Augmented Generation in Fact-Checking
- arxiv url: http://arxiv.org/abs/2408.08535v1
- Date: Fri, 16 Aug 2024 05:15:12 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-19 16:39:36.902286
- Title: CommunityKG-RAG: Leveraging Community Structures in Knowledge Graphs for Advanced Retrieval-Augmented Generation in Fact-Checking
- Title(参考訳): CommunityKG-RAG:Fact-Checkingにおける検索強化生成のための知識グラフにおけるコミュニティ構造を活用する
- Authors: Rong-Ching Chang, Jiawei Zhang,
- Abstract要約: 本稿では,コミュニティKG-RAG(Community Knowledge Graph-Retrieval Augmented Generation)について紹介する。
実験の結果、CommunityKG-RAGは、堅牢でスケーラブルで効率的なソリューションを提供することで、ファクトチェックの大幅な進歩を示す従来の手法よりも優れていることが示された。
- 参考スコア(独自算出の注目度): 7.835264728977939
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite advancements in Large Language Models (LLMs) and Retrieval-Augmented Generation (RAG) systems, their effectiveness is often hindered by a lack of integration with entity relationships and community structures, limiting their ability to provide contextually rich and accurate information retrieval for fact-checking. We introduce CommunityKG-RAG (Community Knowledge Graph-Retrieval Augmented Generation), a novel zero-shot framework that integrates community structures within Knowledge Graphs (KGs) with RAG systems to enhance the fact-checking process. Capable of adapting to new domains and queries without additional training, CommunityKG-RAG utilizes the multi-hop nature of community structures within KGs to significantly improve the accuracy and relevance of information retrieval. Our experimental results demonstrate that CommunityKG-RAG outperforms traditional methods, representing a significant advancement in fact-checking by offering a robust, scalable, and efficient solution.
- Abstract(参考訳): LLM(Large Language Models)やRAG(Retrieval-Augmented Generation)システムの進歩にもかかわらず、それらの効果はエンティティ関係やコミュニティ構造との統合の欠如によってしばしば妨げられ、事実チェックのための文脈的にリッチで正確な情報検索を提供する能力を制限する。
コミュニティKG-RAG(Community Knowledge Graph-Retrieval Augmented Generation)は、知識グラフ(KG)内のコミュニティ構造をRAGシステムと統合し、ファクトチェックプロセスを強化する新しいゼロショットフレームワークである。
コミュニティKG-RAGは、KG内のコミュニティ構造のマルチホップ特性を活用して、情報検索の精度と関連性を大幅に向上する。
実験の結果、CommunityKG-RAGは、堅牢でスケーラブルで効率的なソリューションを提供することにより、ファクトチェックの大幅な進歩を示す従来の手法よりも優れていることが示された。
関連論文リスト
- GLTW: Joint Improved Graph Transformer and LLM via Three-Word Language for Knowledge Graph Completion [52.026016846945424]
我々は、KGの構造情報をエンコードし、それを大規模言語モデルにマージするGLTWと呼ばれる新しい手法を提案する。
具体的には、局所構造情報とグローバル構造情報の両方を効果的に符号化する改良されたグラフ変換器(iGT)を導入する。
また,KG内のすべてのエンティティを分類対象として用いたサブグラフに基づく多分類学習目標を開発し,学習効率を向上する。
論文 参考訳(メタデータ) (2025-02-17T06:02:59Z) - Graph Foundation Models for Recommendation: A Comprehensive Survey [55.70529188101446]
大規模言語モデル(LLM)は自然言語を処理し、理解するために設計されており、どちらも非常に効果的で広く採用されている。
最近の研究はグラフ基礎モデル(GFM)に焦点を当てている。
GFM は GNN と LLM の強みを統合し,複雑な RS 問題をより効率的にモデル化する。
論文 参考訳(メタデータ) (2025-02-12T12:13:51Z) - Knowledge Graph-Guided Retrieval Augmented Generation [34.83235788116369]
本稿では,知識グラフを用いた検索検索生成フレームワークを提案する。
KG$2$RAGは、チャンク間の事実レベルの関係を提供し、得られた結果の多様性と一貫性を改善する。
論文 参考訳(メタデータ) (2025-02-08T02:14:31Z) - GFM-RAG: Graph Foundation Model for Retrieval Augmented Generation [84.41557981816077]
本稿では,新しいグラフ基盤モデル (GFM) である GFM-RAG について紹介する。
GFM-RAGは、複雑なクエリ-知識関係をキャプチャするグラフ構造を理由とする、革新的なグラフニューラルネットワークによって実現されている。
効率とニューラルスケーリング法則との整合性を維持しつつ、最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2025-02-03T07:04:29Z) - Leveraging LLM for Automated Ontology Extraction and Knowledge Graph Generation [3.2513035377783717]
OntoKGenは、オントロジー抽出と知識グラフ生成のための真のパイプラインである。
OntoKGenは、Neo4jのようなスキーマレスで非リレーショナルなデータベースへのシームレスな統合を可能にする。
論文 参考訳(メタデータ) (2024-11-30T23:11:44Z) - StructRAG: Boosting Knowledge Intensive Reasoning of LLMs via Inference-time Hybrid Information Structurization [94.31508613367296]
Retrieval-augmented Generation(RAG)は、大規模言語モデル(LLM)を効果的に強化する鍵となる手段である。
本稿では,手前のタスクに対して最適な構造型を識別し,元の文書をこの構造化形式に再構成し,その結果に基づいて回答を推測するStructRAGを提案する。
実験の結果、StructRAGは最先端のパフォーマンスを実現し、特に挑戦的なシナリオに優れていた。
論文 参考訳(メタデータ) (2024-10-11T13:52:44Z) - LightRAG: Simple and Fast Retrieval-Augmented Generation [12.86888202297654]
Retrieval-Augmented Generation (RAG) システムは、外部知識ソースを統合することで、大規模言語モデル(LLM)を強化する。
既存のRAGシステムには、フラットなデータ表現への依存やコンテキスト認識の欠如など、大きな制限がある。
テキストインデックスと検索プロセスにグラフ構造を組み込んだLightRAGを提案する。
論文 参考訳(メタデータ) (2024-10-08T08:00:12Z) - KG-RAG: Bridging the Gap Between Knowledge and Creativity [0.0]
大規模言語モデルエージェント(LMA)は、情報幻覚、破滅的な忘れ込み、長いコンテキストの処理における制限といった問題に直面している。
本稿では,LMAの知識能力を高めるため,KG-RAG (Knowledge Graph-Retrieval Augmented Generation)パイプラインを提案する。
ComplexWebQuestionsデータセットに関する予備実験では、幻覚的コンテンツの削減において顕著な改善が示されている。
論文 参考訳(メタデータ) (2024-05-20T14:03:05Z) - Knowledge Graph Context-Enhanced Diversified Recommendation [53.3142545812349]
本研究では,知識グラフ(KG)の複雑な文脈における多角化RecSys領域について検討する。
私たちのコントリビューションには、革新的なメトリック、エンティティカバレッジ、KGドメイン内の多様性を効果的に定量化するリレーショナルカバレッジの導入が含まれています。
そこで本稿では,文脈整合性を維持しつつ,KG項目の埋め込みを符号化するCAU(Conditional Alignment and Uniformity)という新しい手法を紹介する。
論文 参考訳(メタデータ) (2023-10-20T03:18:57Z) - Explainable Sparse Knowledge Graph Completion via High-order Graph
Reasoning Network [111.67744771462873]
本稿では,スパース知識グラフ(KG)のための新しい説明可能なモデルを提案する。
高次推論をグラフ畳み込みネットワーク、すなわちHoGRNに結合する。
情報不足を緩和する一般化能力を向上させるだけでなく、解釈可能性も向上する。
論文 参考訳(メタデータ) (2022-07-14T10:16:56Z) - Attentive Knowledge-aware Graph Convolutional Networks with
Collaborative Guidance for Recommendation [36.95691423601792]
我々は,パーソナライズされたレコメンデーション(CG-KGR)のための協調指導を用いた注意深い知識認識型畳み込みネットワークを提案する。
CG-KGRは知識を意識した新しい推薦モデルであり、KGとユーザ・イテム相互作用の豊富でコヒーレントな学習を可能にする。
2つのレコメンデーションタスクで4つの実世界のデータセットについて広範な実験を行う。
論文 参考訳(メタデータ) (2021-09-05T11:55:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。