論文の概要: KG-RAG: Bridging the Gap Between Knowledge and Creativity
- arxiv url: http://arxiv.org/abs/2405.12035v1
- Date: Mon, 20 May 2024 14:03:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-21 13:05:04.731370
- Title: KG-RAG: Bridging the Gap Between Knowledge and Creativity
- Title(参考訳): KG-RAG:知識と創造性のギャップを埋める
- Authors: Diego Sanmartin,
- Abstract要約: 大規模言語モデルエージェント(LMA)は、情報幻覚、破滅的な忘れ込み、長いコンテキストの処理における制限といった問題に直面している。
本稿では,LMAの知識能力を高めるため,KG-RAG (Knowledge Graph-Retrieval Augmented Generation)パイプラインを提案する。
ComplexWebQuestionsデータセットに関する予備実験では、幻覚的コンテンツの削減において顕著な改善が示されている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Ensuring factual accuracy while maintaining the creative capabilities of Large Language Model Agents (LMAs) poses significant challenges in the development of intelligent agent systems. LMAs face prevalent issues such as information hallucinations, catastrophic forgetting, and limitations in processing long contexts when dealing with knowledge-intensive tasks. This paper introduces a KG-RAG (Knowledge Graph-Retrieval Augmented Generation) pipeline, a novel framework designed to enhance the knowledge capabilities of LMAs by integrating structured Knowledge Graphs (KGs) with the functionalities of LLMs, thereby significantly reducing the reliance on the latent knowledge of LLMs. The KG-RAG pipeline constructs a KG from unstructured text and then performs information retrieval over the newly created graph to perform KGQA (Knowledge Graph Question Answering). The retrieval methodology leverages a novel algorithm called Chain of Explorations (CoE) which benefits from LLMs reasoning to explore nodes and relationships within the KG sequentially. Preliminary experiments on the ComplexWebQuestions dataset demonstrate notable improvements in the reduction of hallucinated content and suggest a promising path toward developing intelligent systems adept at handling knowledge-intensive tasks.
- Abstract(参考訳): 大規模言語モデルエージェント(LMAs)の創造的能力を維持しつつ、事実の正確性を確保することは、インテリジェントエージェントシステムの開発において大きな課題となる。
LMAは、情報幻覚、破滅的な忘れ、知識集約的なタスクを扱う場合の長いコンテキストの処理の制限など、一般的な問題に直面している。
本稿では、構造化知識グラフ(KG)とLLMの機能を統合することで、LMAの知識能力を向上する新しいフレームワークであるKG-RAG(Knowledge Graph-Retrieval Augmented Generation)パイプラインを紹介する。
KG-RAGパイプラインは、構造化されていないテキストからKGを構築し、新たに作成されたグラフ上で情報検索を行い、KGQAを実行する(知識グラフ質問回答)。
探索の連鎖 (Chain of Explorations, CoE) と呼ばれる新しいアルゴリズムは、KG内のノードや関係をシーケンシャルに探索するLSMの推論の恩恵を受けている。
ComplexWebQuestionsデータセットに関する予備実験では、幻覚的コンテンツの削減に顕著な改善が示され、知識集約的なタスクに対処できるインテリジェントなシステム開発への有望な道のりが示唆されている。
関連論文リスト
- Decoding on Graphs: Faithful and Sound Reasoning on Knowledge Graphs through Generation of Well-Formed Chains [66.55612528039894]
知識グラフ(KG)は質問応答(QA)のための信頼できる知識ソースとして機能する。
我々は、LLMとKGの深い相乗効果を促進する新しいフレームワークであるDoG(Decoding on Graphs)を提案する。
様々なKGQAタスクに対して異なるバックグラウンドKGを用いた実験により、DoGが優れた、堅牢なパフォーマンスを達成することを示す。
論文 参考訳(メタデータ) (2024-10-24T04:01:40Z) - Graph-constrained Reasoning: Faithful Reasoning on Knowledge Graphs with Large Language Models [83.28737898989694]
大規模言語モデル(LLM)は知識ギャップと幻覚のために忠実な推論に苦しむ。
グラフ制約推論(GCR)は、KGにおける構造的知識とLLMにおける非構造的推論を橋渡しする新しいフレームワークである。
GCRは最先端のパフォーマンスを達成し、追加のトレーニングをすることなく、見えないKGに対して強力なゼロショット一般化性を示す。
論文 参考訳(メタデータ) (2024-10-16T22:55:17Z) - GIVE: Structured Reasoning with Knowledge Graph Inspired Veracity Extrapolation [108.2008975785364]
Graph Inspired Veracity Extrapolation (GIVE)は、パラメトリックメモリと非パラメトリックメモリを統合する新しい推論フレームワークである。
本手法は,ゴールド回答検索ではなく,専門家の問題解決に類似した論理的・段階的推論手法を提案する。
論文 参考訳(メタデータ) (2024-10-11T03:05:06Z) - Knowledge Graph-Enhanced Large Language Models via Path Selection [58.228392005755026]
大規模言語モデル(LLM)は、様々な現実世界のアプリケーションで前例のない性能を示している。
LLMは実際に不正確な出力、すなわち幻覚の問題を発生させることが知られている。
上記の問題に対処する3段階の原理的フレームワークKELPを提案する。
論文 参考訳(メタデータ) (2024-06-19T21:45:20Z) - Explore then Determine: A GNN-LLM Synergy Framework for Reasoning over Knowledge Graph [38.31983923708175]
本稿では,知識グラフ(KGQA)に関する質問応答について述べる。
グラフニューラルネットワーク(GNN)とLarge Language Modelsを相乗化してKGを推論するExplore-then-Determine(EtD)フレームワークを提案する。
EtDは最先端のパフォーマンスを達成し、忠実な推論結果を生成する。
論文 参考訳(メタデータ) (2024-06-03T09:38:28Z) - Leveraging Large Language Models for Semantic Query Processing in a Scholarly Knowledge Graph [1.7418328181959968]
本研究は,革新的なセマンティッククエリ処理システムを開発することを目的としている。
オーストラリア国立大学のコンピュータサイエンス(CS)研究者による研究成果に関する総合的な情報を得ることができる。
論文 参考訳(メタデータ) (2024-05-24T09:19:45Z) - Empowering Small-Scale Knowledge Graphs: A Strategy of Leveraging General-Purpose Knowledge Graphs for Enriched Embeddings [3.7759315989669058]
汎用KGを用いた小規模ドメイン固有知識グラフの埋め込みを充実させるフレームワークを提案する。
実験では、Hits@10測定値で最大44%の上昇が観測された。
この比較的探索されていない研究方向は、知識集約的なタスクにおいて、KGのより頻繁な取り込みを触媒することができる。
論文 参考訳(メタデータ) (2024-05-17T12:46:23Z) - Generate-on-Graph: Treat LLM as both Agent and KG in Incomplete Knowledge Graph Question Answering [87.67177556994525]
我々は、知識グラフ(KG)を探索しながら、新しい実写トリプルを生成する、Generate-on-Graph(GoG)と呼ばれる学習自由な手法を提案する。
GoGはIKGQAでLLMをエージェントとKGの両方として扱うThinking-Searching-Generatingフレームワークを通じて推論を行う。
論文 参考訳(メタデータ) (2024-04-23T04:47:22Z) - Mitigating Large Language Model Hallucinations via Autonomous Knowledge
Graph-based Retrofitting [51.7049140329611]
本稿では,知識グラフに基づくリトロフィッティング(KGR)を提案する。
実験により,実QAベンチマークにおいて,KGRはLLMの性能を大幅に向上できることが示された。
論文 参考訳(メタデータ) (2023-11-22T11:08:38Z) - Retrieve-Rewrite-Answer: A KG-to-Text Enhanced LLMs Framework for
Knowledge Graph Question Answering [16.434098552925427]
本稿では,知識グラフ質問応答(KGQA)課題を解決するために,KG拡張言語モデルアプローチについて検討する。
そこで本研究では,KGの知識をテキスト化された文に変換する,応答に敏感なKG-to-Textアプローチを提案する。
論文 参考訳(メタデータ) (2023-09-20T10:42:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。