Improving the Ability of Pre-trained Language Model by Imparting Large Language Model's Experience
- URL: http://arxiv.org/abs/2408.08553v2
- Date: Wed, 15 Jan 2025 03:37:00 GMT
- Title: Improving the Ability of Pre-trained Language Model by Imparting Large Language Model's Experience
- Authors: Xin Yin, Chao Ni, Xiaodan Xu, Xinrui Li, Xiaohu Yang,
- Abstract summary: Large Language Models (LLMs) and pre-trained Language Models (LMs) have achieved impressive success on many software engineering tasks.
We use LLMs to generate domain-specific data, thereby improving the performance of pre-trained LMs on the target tasks.
- Score: 4.814313782484443
- License:
- Abstract: Large Language Models (LLMs) and pre-trained Language Models (LMs) have achieved impressive success on many software engineering tasks (e.g., code completion and code generation). By leveraging huge existing code corpora (e.g., GitHub), these models can understand the patterns in source code and use these patterns to predict code properties. However, LLMs under few-shot learning perform poorly on non-generative tasks (e.g., fault localization and vulnerability localization), and fine-tuning LLMs is time-consuming and costly for end users and small organizations. Furthermore, the performance of fine-tuning LMs for non-generative tasks is impressive, yet it heavily depends on the amount and quality of data. As a result, the current lack of data and the high cost of collecting it in real-world scenarios further limit the applicability of LMs. In this paper, we leverage the powerful generation capabilities of LLMs to enhance pre-trained LMs. Specifically, we use LLMs to generate domain-specific data, thereby improving the performance of pre-trained LMs on the target tasks. We conduct experiments by combining different LLMs in our generation phase and introducing various LMs to learn from the LLM-generated data. Then, we compare the performance of these LMs before and after learning the data. We find that LLM-generated data significantly enhances the performance of LMs. The improvement can reach up to 58.36% for fault localization and up to 6.09% for clone detection.
Related papers
- Enhancing Code Generation for Low-Resource Languages: No Silver Bullet [55.39571645315926]
Large Language Models (LLMs) rely on large and diverse datasets to learn syntax, semantics, and usage patterns of programming languages.
For low-resource languages, the limited availability of such data hampers the models' ability to generalize effectively.
We present an empirical study investigating the effectiveness of several approaches for boosting LLMs' performance on low-resource languages.
arXiv Detail & Related papers (2025-01-31T12:23:28Z) - Towards Robust Evaluation of Unlearning in LLMs via Data Transformations [17.927224387698903]
Large Language Models (LLMs) have shown to be a great success in a wide range of applications ranging from regular NLP-based use cases to AI agents.
In recent times research in the area of Machine Unlearning (MUL) has become active.
Main idea is to force LLMs to forget (unlearn) certain information (e.g., PII) without suffering from performance loss on regular tasks.
arXiv Detail & Related papers (2024-11-23T07:20:36Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
Large language models (LLMs) hold the promise of solving diverse tasks when provided with appropriate natural language prompts.
We propose SELF-GUIDE, a multi-stage mechanism in which we synthesize task-specific input-output pairs from the student LLM.
We report an absolute improvement of approximately 15% for classification tasks and 18% for generation tasks in the benchmark's metrics.
arXiv Detail & Related papers (2024-07-16T04:41:58Z) - Regurgitative Training: The Value of Real Data in Training Large Language Models [1.2815904071470703]
We evaluate the implications of "regurgitative training" on LLM performance.
We find strong evidence that regurgitative training clearly handicaps the performance of LLMs.
We propose and evaluate three different strategies to mitigate the performance loss of regurgitative training.
arXiv Detail & Related papers (2024-07-03T18:42:55Z) - LLM2LLM: Boosting LLMs with Novel Iterative Data Enhancement [79.31084387589968]
Pretrained large language models (LLMs) are currently state-of-the-art for solving the vast majority of natural language processing tasks.
We propose LLM2LLM, a data augmentation strategy that uses a teacher LLM to enhance a small seed dataset.
We achieve improvements up to 24.2% on the GSM8K dataset, 32.6% on CaseHOLD, 32.0% on SNIPS, 52.6% on TREC and 39.8% on SST-2 over regular fine-tuning in the low-data regime.
arXiv Detail & Related papers (2024-03-22T08:57:07Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
Large Language Models (LLMs) exhibit emerging in-context learning abilities through prompt engineering.
The challenge of improving the generalizability and factuality of LLMs in natural language understanding and question answering remains under-explored.
We propose a framework that enhances the reliability of LLMs as it: 1) generalizes out-of-distribution data, 2) elucidates how LLMs benefit from discriminative models, and 3) minimizes hallucinations in generative tasks.
arXiv Detail & Related papers (2023-12-26T07:24:46Z) - Reflection-Tuning: Data Recycling Improves LLM Instruction-Tuning [79.32236399694077]
Low-quality data in the training set are usually detrimental to instruction tuning.
We propose a novel method, termed "reflection-tuning"
This approach utilizes an oracle LLM to recycle the original training data by introspecting and enhancing the quality of instructions and responses in the data.
arXiv Detail & Related papers (2023-10-18T05:13:47Z) - Small Language Models Improve Giants by Rewriting Their Outputs [18.025736098795296]
We tackle the problem of leveraging training data to improve the performance of large language models (LLMs) without fine-tuning.
We create a pool of candidates from the LLM through few-shot prompting and we employ a compact model, the LM-corrector (LMCor), specifically trained to merge these candidates to produce an enhanced output.
Experiments on four natural language generation tasks demonstrate that even a small LMCor model (250M) substantially improves the few-shot performance of LLMs (62B), matching and even outperforming standard fine-tuning.
arXiv Detail & Related papers (2023-05-22T22:07:50Z) - LLM-Pruner: On the Structural Pruning of Large Language Models [65.02607075556742]
Large language models (LLMs) have shown remarkable capabilities in language understanding and generation.
We tackle the compression of LLMs within the bound of two constraints: being task-agnostic and minimizing the reliance on the original training dataset.
Our method, named LLM-Pruner, adopts structural pruning that selectively removes non-critical coupled structures.
arXiv Detail & Related papers (2023-05-19T12:10:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.