Detection and tracking of MAVs using a LiDAR with rosette scanning pattern
- URL: http://arxiv.org/abs/2408.08555v1
- Date: Fri, 16 Aug 2024 06:40:20 GMT
- Title: Detection and tracking of MAVs using a LiDAR with rosette scanning pattern
- Authors: Sándor Gazdag, Tom Möller, Tamás Filep, Anita Keszler, András L. Majdik,
- Abstract summary: This work presents a method for the detection and tracking of MAVs using a novel, low-cost rosette scanning LiDAR on a pan-tilt turret.
The tracking makes it possible to keep the MAV in the center, maximizing the density of 3D points measured on the target by the LiDAR sensor.
- Score: 2.062195473318468
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The usage of commercial Micro Aerial Vehicles (MAVs) has increased drastically during the last decade. While the added value of MAVs to society is apparent, their growing use is also coming with increasing risks like violating public airspace at airports or committing privacy violations. To mitigate these issues it is becoming critical to develop solutions that incorporate the detection and tracking of MAVs with autonomous systems. This work presents a method for the detection and tracking of MAVs using a novel, low-cost rosette scanning LiDAR on a pan-tilt turret. Once the static background is captured, a particle filter is utilized to detect a possible target and track its position with a physical, programmable pan-tilt system. The tracking makes it possible to keep the MAV in the center, maximizing the density of 3D points measured on the target by the LiDAR sensor. The developed algorithm was evaluated within the indoor MIcro aerial vehicle and MOtion capture (MIMO) arena and has state-of-the-art tracking accuracy, stability, and fast re-detection time in case of tracking loss. Based on the outdoor tests, it was possible to significantly increase the detection distance and number of returned points compared to other similar methods using LiDAR.
Related papers
- RobMOT: Robust 3D Multi-Object Tracking by Observational Noise and State Estimation Drift Mitigation on LiDAR PointCloud [11.111388829965103]
This work addresses limitations in recent 3D tracking-by-detection methods.
We propose a novel online track validity mechanism that temporally distinguishes between legitimate and ghost tracks.
We also introduce a refinement to the Kalman filter that enhances noise mitigation in trajectory drift, leading to more robust state estimation for occluded objects.
arXiv Detail & Related papers (2024-05-19T12:49:21Z) - An Empirical Analysis of Range for 3D Object Detection [70.54345282696138]
We present an empirical analysis of far-field 3D detection using the long-range detection dataset Argoverse 2.0.
Near-field LiDAR measurements are dense and optimally encoded by small voxels, while far-field measurements are sparse and are better encoded with large voxels.
We propose simple techniques to efficiently ensemble models for long-range detection that improve efficiency by 33% and boost accuracy by 3.2% CDS.
arXiv Detail & Related papers (2023-08-08T05:29:26Z) - A Vision-based Autonomous Perching Approach for Nano Aerial Vehicles [0.0]
A vision-based autonomous perching approach for nano quadcopters is proposed.
The drone can successfully perch on the center of markers within two centimeters of precision.
arXiv Detail & Related papers (2023-06-16T02:34:50Z) - Vision-based Target Pose Estimation with Multiple Markers for the
Perching of UAVs [0.0]
In this paper, a vision-based target poses estimation method using multiple markers is proposed.
A perching target with a small marker inside a larger one is designed to improve detection capability at wide and close ranges.
The poses are then sent to the position controller to align the drone and the marker's center and steer it to perch on the target.
arXiv Detail & Related papers (2023-04-25T16:51:10Z) - A Lightweight and Detector-free 3D Single Object Tracker on Point Clouds [50.54083964183614]
It is non-trivial to perform accurate target-specific detection since the point cloud of objects in raw LiDAR scans is usually sparse and incomplete.
We propose DMT, a Detector-free Motion prediction based 3D Tracking network that totally removes the usage of complicated 3D detectors.
arXiv Detail & Related papers (2022-03-08T17:49:07Z) - A dataset for multi-sensor drone detection [67.75999072448555]
The use of small and remotely controlled unmanned aerial vehicles (UAVs) has increased in recent years.
Most studies on drone detection fail to specify the type of acquisition device, the drone type, the detection range, or the dataset.
We contribute with an annotated multi-sensor database for drone detection that includes infrared and visible videos and audio files.
arXiv Detail & Related papers (2021-11-02T20:52:03Z) - A Multi-UAV System for Exploration and Target Finding in Cluttered and
GPS-Denied Environments [68.31522961125589]
We propose a framework for a team of UAVs to cooperatively explore and find a target in complex GPS-denied environments with obstacles.
The team of UAVs autonomously navigates, explores, detects, and finds the target in a cluttered environment with a known map.
Results indicate that the proposed multi-UAV system has improvements in terms of time-cost, the proportion of search area surveyed, as well as successful rates for search and rescue missions.
arXiv Detail & Related papers (2021-07-19T12:54:04Z) - Tracking-by-Counting: Using Network Flows on Crowd Density Maps for
Tracking Multiple Targets [96.98888948518815]
State-of-the-art multi-object tracking(MOT) methods follow the tracking-by-detection paradigm.
We propose a new MOT paradigm, tracking-by-counting, tailored for crowded scenes.
arXiv Detail & Related papers (2020-07-18T19:51:53Z) - Reinforcement Learning for UAV Autonomous Navigation, Mapping and Target
Detection [36.79380276028116]
We study a joint detection, mapping and navigation problem for a single unmanned aerial vehicle (UAV) equipped with a low complexity radar and flying in an unknown environment.
The goal is to optimize its trajectory with the purpose of maximizing the mapping accuracy and to avoid areas where measurements might not be sufficiently informative from the perspective of a target detection.
arXiv Detail & Related papers (2020-05-05T20:39:18Z) - Physically Realizable Adversarial Examples for LiDAR Object Detection [72.0017682322147]
We present a method to generate universal 3D adversarial objects to fool LiDAR detectors.
In particular, we demonstrate that placing an adversarial object on the rooftop of any target vehicle to hide the vehicle entirely from LiDAR detectors with a success rate of 80%.
This is one step closer towards safer self-driving under unseen conditions from limited training data.
arXiv Detail & Related papers (2020-04-01T16:11:04Z) - Dynamic Radar Network of UAVs: A Joint Navigation and Tracking Approach [36.587096293618366]
An emerging problem is to track unauthorized small unmanned aerial vehicles (UAVs) hiding behind buildings.
This paper proposes the idea of a dynamic radar network of UAVs for real-time and high-accuracy tracking of malicious targets.
arXiv Detail & Related papers (2020-01-13T23:23:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.