EraW-Net: Enhance-Refine-Align W-Net for Scene-Associated Driver Attention Estimation
- URL: http://arxiv.org/abs/2408.08570v2
- Date: Thu, 31 Oct 2024 16:20:26 GMT
- Title: EraW-Net: Enhance-Refine-Align W-Net for Scene-Associated Driver Attention Estimation
- Authors: Jun Zhou, Chunsheng Liu, Faliang Chang, Wenqian Wang, Penghui Hao, Yiming Huang, Zhiqiang Yang,
- Abstract summary: Associating driver attention with driving scene across two fields of views is a hard cross-domain perception problem.
Previous methods typically focus on a single view or map attention to the scene via estimated gaze.
We propose a novel method for end-to-end scene-associated driver attention estimation, called EraWNet.
- Score: 17.0226030258296
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Associating driver attention with driving scene across two fields of views (FOVs) is a hard cross-domain perception problem, which requires comprehensive consideration of cross-view mapping, dynamic driving scene analysis, and driver status tracking. Previous methods typically focus on a single view or map attention to the scene via estimated gaze, failing to exploit the implicit connection between them. Moreover, simple fusion modules are insufficient for modeling the complex relationships between the two views, making information integration challenging. To address these issues, we propose a novel method for end-to-end scene-associated driver attention estimation, called EraW-Net. This method enhances the most discriminative dynamic cues, refines feature representations, and facilitates semantically aligned cross-domain integration through a W-shaped architecture, termed W-Net. Specifically, a Dynamic Adaptive Filter Module (DAF-Module) is proposed to address the challenges of frequently changing driving environments by extracting vital regions. It suppresses the indiscriminately recorded dynamics and highlights crucial ones by innovative joint frequency-spatial analysis, enhancing the model's ability to parse complex dynamics. Additionally, to track driver states during non-fixed facial poses, we propose a Global Context Sharing Module (GCS-Module) to construct refined feature representations by capturing hierarchical features that adapt to various scales of head and eye movements. Finally, W-Net achieves systematic cross-view information integration through its "Encoding-Independent Partial Decoding-Fusion Decoding" structure, addressing semantic misalignment in heterogeneous data integration. Experiments demonstrate that the proposed method robustly and accurately estimates the mapping of driver attention in scene on large public datasets.
Related papers
- CRASH: Crash Recognition and Anticipation System Harnessing with Context-Aware and Temporal Focus Attentions [13.981748780317329]
Accurately and promptly predicting accidents among surrounding traffic agents from camera footage is crucial for the safety of autonomous vehicles (AVs)
This study introduces a novel accident anticipation framework for AVs, termed CRASH.
It seamlessly integrates five components: object detector, feature extractor, object-aware module, context-aware module, and multi-layer fusion.
Our model surpasses existing top baselines in critical evaluation metrics like Average Precision (AP) and mean Time-To-Accident (mTTA)
arXiv Detail & Related papers (2024-07-25T04:12:49Z) - SSGA-Net: Stepwise Spatial Global-local Aggregation Networks for for Autonomous Driving [27.731481134782577]
Current models usually aggregate features from the neighboring frames to enhance the object representations for the task heads.
These methods rely on the information from the future frames and suffer from high computational complexity.
We introduce a stepwise spatial global-local aggregation network to solve these problems.
arXiv Detail & Related papers (2024-05-29T08:12:51Z) - Multi-view Aggregation Network for Dichotomous Image Segmentation [76.75904424539543]
Dichotomous Image (DIS) has recently emerged towards high-precision object segmentation from high-resolution natural images.
Existing methods rely on tedious multiple encoder-decoder streams and stages to gradually complete the global localization and local refinement.
Inspired by it, we model DIS as a multi-view object perception problem and provide a parsimonious multi-view aggregation network (MVANet)
Experiments on the popular DIS-5K dataset show that our MVANet significantly outperforms state-of-the-art methods in both accuracy and speed.
arXiv Detail & Related papers (2024-04-11T03:00:00Z) - Prompt-Driven Dynamic Object-Centric Learning for Single Domain
Generalization [61.64304227831361]
Single-domain generalization aims to learn a model from single source domain data to achieve generalized performance on other unseen target domains.
We propose a dynamic object-centric perception network based on prompt learning, aiming to adapt to the variations in image complexity.
arXiv Detail & Related papers (2024-02-28T16:16:51Z) - Appearance-Based Refinement for Object-Centric Motion Segmentation [85.2426540999329]
We introduce an appearance-based refinement method that leverages temporal consistency in video streams to correct inaccurate flow-based proposals.
Our approach involves a sequence-level selection mechanism that identifies accurate flow-predicted masks as exemplars.
Its performance is evaluated on multiple video segmentation benchmarks, including DAVIS, YouTube, SegTrackv2, and FBMS-59.
arXiv Detail & Related papers (2023-12-18T18:59:51Z) - Alignment-free HDR Deghosting with Semantics Consistent Transformer [76.91669741684173]
High dynamic range imaging aims to retrieve information from multiple low-dynamic range inputs to generate realistic output.
Existing methods often focus on the spatial misalignment across input frames caused by the foreground and/or camera motion.
We propose a novel alignment-free network with a Semantics Consistent Transformer (SCTNet) with both spatial and channel attention modules.
arXiv Detail & Related papers (2023-05-29T15:03:23Z) - Learning to Aggregate Multi-Scale Context for Instance Segmentation in
Remote Sensing Images [28.560068780733342]
A novel context aggregation network (CATNet) is proposed to improve the feature extraction process.
The proposed model exploits three lightweight plug-and-play modules, namely dense feature pyramid network (DenseFPN), spatial context pyramid ( SCP), and hierarchical region of interest extractor (HRoIE)
arXiv Detail & Related papers (2021-11-22T08:55:25Z) - Full-Duplex Strategy for Video Object Segmentation [141.43983376262815]
Full- Strategy Network (FSNet) is a novel framework for video object segmentation (VOS)
Our FSNet performs the crossmodal feature-passing (i.e., transmission and receiving) simultaneously before fusion decoding stage.
We show that our FSNet outperforms other state-of-the-arts for both the VOS and video salient object detection tasks.
arXiv Detail & Related papers (2021-08-06T14:50:50Z) - Understanding Dynamic Scenes using Graph Convolution Networks [22.022759283770377]
We present a novel framework to model on-road vehicle behaviors from a sequence of temporally ordered frames as grabbed by a moving camera.
We show a seamless transfer of learning to multiple datasets without resorting to fine-tuning.
Such behavior prediction methods find immediate relevance in a variety of navigation tasks.
arXiv Detail & Related papers (2020-05-09T13:05:06Z) - Cascaded Human-Object Interaction Recognition [175.60439054047043]
We introduce a cascade architecture for a multi-stage, coarse-to-fine HOI understanding.
At each stage, an instance localization network progressively refines HOI proposals and feeds them into an interaction recognition network.
With our carefully-designed human-centric relation features, these two modules work collaboratively towards effective interaction understanding.
arXiv Detail & Related papers (2020-03-09T17:05:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.