論文の概要: Reference-free Axial Super-resolution of 3D Microscopy Images using Implicit Neural Representation with a 2D Diffusion Prior
- arxiv url: http://arxiv.org/abs/2408.08616v1
- Date: Fri, 16 Aug 2024 09:14:12 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-19 16:07:32.371190
- Title: Reference-free Axial Super-resolution of 3D Microscopy Images using Implicit Neural Representation with a 2D Diffusion Prior
- Title(参考訳): インシシットニューラル表現を用いた3次元顕微鏡画像の2次元拡散前処理による非参照軸超解像
- Authors: Kyungryun Lee, Won-Ki Jeong,
- Abstract要約: 学習に基づく3次元超解像モデルの訓練には、真理等方性ボリュームが必要であり、次元の呪いに苦しむ。
既存の方法では、2Dニューラルネットワークを使用して各軸スライスを再構築し、最終的には体積全体をまとめる。
独立軸スライスにより最適化された場合でも3次元コヒーレンシを実現する暗黙的ニューラル表現(INR)に基づく再構成フレームワークを提案する。
- 参考スコア(独自算出の注目度): 4.1326413814647545
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Analysis and visualization of 3D microscopy images pose challenges due to anisotropic axial resolution, demanding volumetric super-resolution along the axial direction. While training a learning-based 3D super-resolution model seems to be a straightforward solution, it requires ground truth isotropic volumes and suffers from the curse of dimensionality. Therefore, existing methods utilize 2D neural networks to reconstruct each axial slice, eventually piecing together the entire volume. However, reconstructing each slice in the pixel domain fails to give consistent reconstruction in all directions leading to misalignment artifacts. In this work, we present a reconstruction framework based on implicit neural representation (INR), which allows 3D coherency even when optimized by independent axial slices in a batch-wise manner. Our method optimizes a continuous volumetric representation from low-resolution axial slices, using a 2D diffusion prior trained on high-resolution lateral slices without requiring isotropic volumes. Through experiments on real and synthetic anisotropic microscopy images, we demonstrate that our method surpasses other state-of-the-art reconstruction methods. The source code is available on GitHub: https://github.com/hvcl/INR-diffusion.
- Abstract(参考訳): 3次元顕微鏡画像の解析と可視化は、軸方向に沿って体積超解像を必要とする異方性軸分解能による課題を提起する。
学習に基づく3D超解像モデルのトレーニングは簡単な解決策のようだが、真理等方的なボリュームが必要であり、次元の呪いに苦しむ。
そのため、既存の手法では2次元ニューラルネットワークを用いて各軸スライスを再構築し、最終的には体積全体をまとめる。
しかし、画素領域の各スライスを再構成しても、すべての方向が一貫した再構成を行なわなかったため、ミスアライメントアーティファクトが生じる。
本研究では,独立軸スライスによってバッチ的に最適化された場合でも3次元コヒーレンシを実現する暗黙的ニューラル表現(INR)に基づく再構成フレームワークを提案する。
提案手法は, 等方ボリュームを必要とせず, 高分解能側方スライスをトレーニングした2次元拡散法を用いて, 低分解能軸スライスからの連続体積表現を最適化する。
実・合成異方性顕微鏡画像の実験を通して,本手法が他の最先端の再構成手法を上回ることを示す。
ソースコードはGitHubで入手できる: https://github.com/hvcl/INR-diffusion。
関連論文リスト
- From Diffusion to Resolution: Leveraging 2D Diffusion Models for 3D Super-Resolution Task [19.56372155146739]
本稿では,3次元電子顕微鏡(vEM)の超解像性を高めるために,2次元拡散モデルと体積内の横方向の連続性を利用する新しい手法を提案する。
イオンビーム走査型電子顕微鏡(FIB-SEM)の2つのデータを用いて,本フレームワークのロバスト性と実用性を示した。
論文 参考訳(メタデータ) (2024-11-25T09:12:55Z) - MV2Cyl: Reconstructing 3D Extrusion Cylinders from Multi-View Images [13.255044855902408]
2次元多視点画像から3次元を再構成する新しい手法であるMV2Cylを提案する。
本研究では,2次元スケッチと抽出パラメータ推定において最適な精度で最適な再構成結果を得る。
論文 参考訳(メタデータ) (2024-06-16T08:54:38Z) - What You See is What You GAN: Rendering Every Pixel for High-Fidelity
Geometry in 3D GANs [82.3936309001633]
3D-aware Generative Adversarial Networks (GANs) は,マルチビュー一貫性画像と3Dジオメトリを生成する学習において,顕著な進歩を見せている。
しかし、ボリュームレンダリングにおける高密度サンプリングの大幅なメモリと計算コストにより、3D GANはパッチベースのトレーニングを採用するか、後処理の2Dスーパーレゾリューションで低解像度レンダリングを採用することを余儀なくされた。
ニューラルボリュームレンダリングをネイティブ2次元画像の高解像度化に拡張する手法を提案する。
論文 参考訳(メタデータ) (2024-01-04T18:50:38Z) - StableDreamer: Taming Noisy Score Distillation Sampling for Text-to-3D [88.66678730537777]
本稿では3つの進歩を取り入れた方法論であるStableDreamerを紹介する。
まず、SDS生成前の等価性と、簡単な教師付きL2再構成損失を定式化する。
第2に,画像空間拡散は幾何学的精度に寄与するが,色調の鮮明化には潜時空間拡散が不可欠であることを示す。
論文 参考訳(メタデータ) (2023-12-02T02:27:58Z) - Passive superresolution imaging of incoherent objects [63.942632088208505]
手法は、Hermite-Gaussianモードとその重ね合わせのオーバーコンプリートベースで、画像平面内のフィールドの空間モード成分を測定することで構成される。
ディープニューラルネットワークは、これらの測定からオブジェクトを再構築するために使用される。
論文 参考訳(メタデータ) (2023-04-19T15:53:09Z) - Fast 3D Volumetric Image Reconstruction from 2D MRI Slices by Parallel
Processing [1.7778609937758323]
ヒト脊髄と脳のMR画像の2次元スライス(2次元)の単一配列からの仮想3次元再構成法を提案する。
われわれのアプローチは、捕獲された物体の内部組織だけでなく、エッジ、形状、大きさの保存に役立ちます。
我々の知る限り、これは2次元スライスからの3次元再構成のためのクリグとマルチプロセッシングに基づく、この種のアプローチの1つである。
論文 参考訳(メタデータ) (2023-03-16T17:39:11Z) - Improving 3D Imaging with Pre-Trained Perpendicular 2D Diffusion Models [52.529394863331326]
本稿では,2つの垂直2次元拡散モデルを用いて3次元逆問題の解法を提案する。
MRI Z軸超解像, 圧縮センシングMRI, スパースCTなどの3次元医用画像再構成作業に有効である。
論文 参考訳(メタデータ) (2023-03-15T08:28:06Z) - Neural Volume Super-Resolution [49.879789224455436]
本稿では,シーンの体積表現を直接操作する超解像ネットワークを提案する。
提案手法を実現するために,複数の2次元特徴面にヒンジを付ける新しい3次元表現法を提案する。
多様な3Dシーンの多視点一貫したビューを超解し,提案手法の有効性を検証した。
論文 参考訳(メタデータ) (2022-12-09T04:54:13Z) - 3D Reconstruction of Curvilinear Structures with Stereo Matching
DeepConvolutional Neural Networks [52.710012864395246]
本稿では,立体対における曲線構造の検出とマッチングのための完全自動パイプラインを提案する。
主に、TEM画像のステレオ対から転位を3次元再構成することに焦点を当てる。
論文 参考訳(メタデータ) (2021-10-14T23:05:47Z) - Detailed 3D Human Body Reconstruction from Multi-view Images Combining
Voxel Super-Resolution and Learned Implicit Representation [12.459968574683625]
多視点画像から詳細な3次元人体を再構築する粗い方法を提案する。
粗い3Dモデルは、マルチスケールな特徴に基づいて暗黙表現を学習することによって推定される。
洗練された3D人体モデルは、詳細を保存できるボクセル超解像によって製造することができる。
論文 参考訳(メタデータ) (2020-12-11T08:07:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。