論文の概要: Resolution-Robust 3D MRI Reconstruction with 2D Diffusion Priors: Diverse-Resolution Training Outperforms Interpolation
- arxiv url: http://arxiv.org/abs/2412.18584v1
- Date: Tue, 24 Dec 2024 18:25:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-25 15:55:48.678344
- Title: Resolution-Robust 3D MRI Reconstruction with 2D Diffusion Priors: Diverse-Resolution Training Outperforms Interpolation
- Title(参考訳): 2次元拡散を先行した高分解能3次元MRI画像再構成 : 逆解法訓練による補間効果
- Authors: Anselm Krainovic, Stefan Ruschke, Reinhard Heckel,
- Abstract要約: 2次元スライスで訓練された2次元拡散モデルが3次元MRI再構成に活用され始めている。
既存の方法では、ボクセルサイズが一定であり、ボクセルサイズが変化すると性能が低下する。
本稿では,2次元拡散先行画像を用いた高分解能3次元MRI再構成手法の提案と検討を行う。
- 参考スコア(独自算出の注目度): 18.917672392645006
- License:
- Abstract: Deep learning-based 3D imaging, in particular magnetic resonance imaging (MRI), is challenging because of limited availability of 3D training data. Therefore, 2D diffusion models trained on 2D slices are starting to be leveraged for 3D MRI reconstruction. However, as we show in this paper, existing methods pertain to a fixed voxel size, and performance degrades when the voxel size is varied, as it is often the case in clinical practice. In this paper, we propose and study several approaches for resolution-robust 3D MRI reconstruction with 2D diffusion priors. As a result of this investigation, we obtain a simple resolution-robust variational 3D reconstruction approach based on diffusion-guided regularization of randomly sampled 2D slices. This method provides competitive reconstruction quality compared to posterior sampling baselines. Towards resolving the sensitivity to resolution-shifts, we investigate state-of-the-art model-based approaches including Gaussian splatting, neural representations, and infinite-dimensional diffusion models, as well as a simple data-centric approach of training the diffusion model on several resolutions. Our experiments demonstrate that the model-based approaches fail to close the performance gap in 3D MRI. In contrast, the data-centric approach of training the diffusion model on various resolutions effectively provides a resolution-robust method without compromising accuracy.
- Abstract(参考訳): 深層学習に基づく3Dイメージング、特にMRI(MRI)は、3Dトレーニングデータの入手が限られているため困難である。
そのため、2次元スライスで訓練された2次元拡散モデルが3次元MRI再構成に活用され始めている。
しかし,本論文で示すように,既存の方法ではボクセルサイズが一定であり,ボクセルサイズが変化すると性能が低下する。
本稿では,2次元拡散先行画像を用いた高分解能3次元MRI再構成手法の提案と検討を行う。
本研究の結果,ランダムなサンプル2Dスライス拡散誘導正規化に基づく簡易分解能・ロバストな3D再構成手法が得られた。
この方法は、後方サンプリングベースラインと比較して、競争力のある復元品質を提供する。
分解能シフトに対する感度の解決に向けて,ガウススプラッティング,ニューラル表現,無限次元拡散モデルなどの最先端モデルに基づくアプローチと,複数の解像度で拡散モデルを訓練する単純なデータ中心アプローチを検討する。
実験により, 3次元MRIでは, モデルに基づくアプローチが性能ギャップを埋めることができないことが示された。
対照的に、様々な解像度で拡散モデルをトレーニングするデータ中心のアプローチは、精度を損なうことなく、効果的に解像ロバスト法を提供する。
関連論文リスト
- MRI Reconstruction with Regularized 3D Diffusion Model (R3DM) [2.842800539489865]
正規化3次元拡散モデルと最適化手法を組み合わせた3次元MRI再構成法を提案する。
拡散に基づく事前処理を取り入れることで,画像品質の向上,ノイズの低減,3次元MRI再構成の全体的な忠実度の向上を実現した。
論文 参考訳(メタデータ) (2024-12-25T00:55:05Z) - DSplats: 3D Generation by Denoising Splats-Based Multiview Diffusion Models [67.50989119438508]
本稿では,ガウスをベースとしたレコンストラクタを用いて,リアルな3Dアセットを生成することで,マルチビュー画像を直接認識するDSplatを紹介した。
実験の結果,DSplatsは高品質で空間的に一貫した出力を生成できるだけでなく,単一画像から3次元再構成への新たな標準も設定できることがわかった。
論文 参考訳(メタデータ) (2024-12-11T07:32:17Z) - StableDreamer: Taming Noisy Score Distillation Sampling for Text-to-3D [88.66678730537777]
本稿では3つの進歩を取り入れた方法論であるStableDreamerを紹介する。
まず、SDS生成前の等価性と、簡単な教師付きL2再構成損失を定式化する。
第2に,画像空間拡散は幾何学的精度に寄与するが,色調の鮮明化には潜時空間拡散が不可欠であることを示す。
論文 参考訳(メタデータ) (2023-12-02T02:27:58Z) - Two-and-a-half Order Score-based Model for Solving 3D Ill-posed Inverse
Problems [7.074380879971194]
本稿では,3次元ボリューム再構成のための2次半順序スコアベースモデル(TOSM)を提案する。
トレーニング期間中、TOSMは2次元空間のデータ分布を学習し、トレーニングの複雑さを低減する。
再構成フェーズでは、TOSMは3方向の相補的なスコアを利用して、3次元空間のデータ分布を更新する。
論文 参考訳(メタデータ) (2023-08-16T17:07:40Z) - Reference-Free Isotropic 3D EM Reconstruction using Diffusion Models [8.590026259176806]
本稿では、参照データや劣化過程に関する事前知識の制限を克服する拡散モデルに基づくフレームワークを提案する。
提案手法では, 2次元拡散モデルを用いて連続的に3次元ボリュームを再構成し, 高精度なサンプルデータに適している。
論文 参考訳(メタデータ) (2023-08-03T07:57:02Z) - Optimizing Sampling Patterns for Compressed Sensing MRI with Diffusion
Generative Models [75.52575380824051]
圧縮センシングマルチコイルMRIにおけるサブサンプリングパターンを最適化する学習手法を提案する。
拡散モデルとMRI計測プロセスにより得られた後部平均推定値に基づいて1段階の再構成を行う。
本手法では,効果的なサンプリングパターンの学習には5つのトレーニング画像が必要である。
論文 参考訳(メタデータ) (2023-06-05T22:09:06Z) - Improving 3D Imaging with Pre-Trained Perpendicular 2D Diffusion Models [52.529394863331326]
本稿では,2つの垂直2次元拡散モデルを用いて3次元逆問題の解法を提案する。
MRI Z軸超解像, 圧縮センシングMRI, スパースCTなどの3次元医用画像再構成作業に有効である。
論文 参考訳(メタデータ) (2023-03-15T08:28:06Z) - Solving 3D Inverse Problems using Pre-trained 2D Diffusion Models [33.343489006271255]
拡散モデルは、高品質なサンプルを持つ新しい最先端の生成モデルとして登場した。
そこで本研究では, モデルに基づく2次元拡散を, 全次元にわたるコヒーレントな再構成を達成できるように, 実験時の残りの方向で先行する2次元拡散を拡大することを提案する。
提案手法は,1つのコモディティGPU上で動作可能であり,新しい最先端技術を確立する。
論文 参考訳(メタデータ) (2022-11-19T10:32:21Z) - Revisiting 3D Context Modeling with Supervised Pre-training for
Universal Lesion Detection in CT Slices [48.85784310158493]
CTスライスにおける普遍的病変検出のための3Dコンテキスト強化2D特徴を効率的に抽出するための修飾擬似3次元特徴ピラミッドネットワーク(MP3D FPN)を提案する。
新たな事前学習手法により,提案したMP3D FPNは,DeepLesionデータセット上での最先端検出性能を実現する。
提案された3Dプリトレーニングウェイトは、他の3D医療画像分析タスクのパフォーマンスを高めるために使用できる。
論文 参考訳(メタデータ) (2020-12-16T07:11:16Z) - Modelling the Distribution of 3D Brain MRI using a 2D Slice VAE [66.63629641650572]
本研究では,2次元スライスVAEとガウスモデルを組み合わせた3次元MR脳の体積分布をモデル化する手法を提案する。
また,本研究では,脳解剖学に適合するセグメンテーションの精度を定量的に評価する新たなボリューム評価手法を提案する。
論文 参考訳(メタデータ) (2020-07-09T13:23:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。