Modeling the Neonatal Brain Development Using Implicit Neural Representations
- URL: http://arxiv.org/abs/2408.08647v1
- Date: Fri, 16 Aug 2024 10:22:54 GMT
- Title: Modeling the Neonatal Brain Development Using Implicit Neural Representations
- Authors: Florentin Bieder, Paul Friedrich, Hélène Corbaz, Alicia Durrer, Julia Wolleb, Philippe C. Cattin,
- Abstract summary: We propose a neural network, specifically an implicit neural representation (INR), to predict 2D- and 3D images of varying time points.
In order to model a subject-specific development process, it is necessary to disentangle the age from the subjects' identity in the latent space of the INR.
We show that our method can be applied in a memory-efficient way, which is especially important for 3D data.
- Score: 1.5550533143704954
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The human brain undergoes rapid development during the third trimester of pregnancy. In this work, we model the neonatal development of the infant brain in this age range. As a basis, we use MR images of preterm- and term-birth neonates from the developing human connectome project (dHCP). We propose a neural network, specifically an implicit neural representation (INR), to predict 2D- and 3D images of varying time points. In order to model a subject-specific development process, it is necessary to disentangle the age from the subjects' identity in the latent space of the INR. We propose two methods, Subject Specific Latent Vectors (SSL) and Stochastic Global Latent Augmentation (SGLA), enabling this disentanglement. We perform an analysis of the results and compare our proposed model to an age-conditioned denoising diffusion model as a baseline. We also show that our method can be applied in a memory-efficient way, which is especially important for 3D data.
Related papers
- LoCI-DiffCom: Longitudinal Consistency-Informed Diffusion Model for 3D Infant Brain Image Completion [45.361733575664886]
We propose LoCI-DiffCom, a novel Longitudinal Consistency-Informed Diffusion model for infant brain image Completion.
Our approach can extract individualized developmental features while ensuring context-aware consistency.
arXiv Detail & Related papers (2024-05-17T10:53:40Z) - MindBridge: A Cross-Subject Brain Decoding Framework [60.58552697067837]
Brain decoding aims to reconstruct stimuli from acquired brain signals.
Currently, brain decoding is confined to a per-subject-per-model paradigm.
We present MindBridge, that achieves cross-subject brain decoding by employing only one model.
arXiv Detail & Related papers (2024-04-11T15:46:42Z) - Modeling 3D Infant Kinetics Using Adaptive Graph Convolutional Networks [2.2279946664123664]
Spontaneous motor activity, orkinetics', is shown to provide a powerful surrogate measure of upcoming neurodevelopment.
Here, we follow an alternative approach, predicting infants' maturation based on data-driven evaluation of individual motor patterns.
arXiv Detail & Related papers (2024-02-22T09:34:48Z) - Cas-DiffCom: Cascaded diffusion model for infant longitudinal
super-resolution 3D medical image completion [47.83003164569194]
We propose a two-stage cascaded diffusion model, Cas-DiffCom, for dense and longitudinal 3D infant brain MRI completion and super-resolution.
Experiment results validate that Cas-DiffCom achieves both individual consistency and high fidelity in longitudinal infant brain image completion.
arXiv Detail & Related papers (2024-02-21T12:54:40Z) - Patched Diffusion Models for Unsupervised Anomaly Detection in Brain MRI [55.78588835407174]
We propose a method that reformulates the generation task of diffusion models as a patch-based estimation of healthy brain anatomy.
We evaluate our approach on data of tumors and multiple sclerosis lesions and demonstrate a relative improvement of 25.1% compared to existing baselines.
arXiv Detail & Related papers (2023-03-07T09:40:22Z) - Predi\c{c}\~ao da Idade Cerebral a partir de Imagens de Resson\^ancia
Magn\'etica utilizando Redes Neurais Convolucionais [57.52103125083341]
Deep learning techniques for brain age prediction from magnetic resonance images are investigated.
The identification of biomarkers is useful for detecting an early-stage neurodegenerative process, as well as for predicting age-related or non-age-related cognitive decline.
The best result was obtained by the 2D model, which achieved a mean absolute error of 3.83 years.
arXiv Detail & Related papers (2021-12-23T14:51:45Z) - Neurodevelopmental Age Estimation of Infants Using a 3D-Convolutional
Neural Network Model based on Fusion MRI Sequences [0.08341869765517104]
The ability to determine if the brain is developing normally is a key component of pediatric neuroradiology and neurology.
We investigated a three-dimensional convolutional neural network (3D CNN) to rapidly classify brain developmental age using common MRI sequences.
arXiv Detail & Related papers (2020-10-07T01:24:15Z) - Modelling the Distribution of 3D Brain MRI using a 2D Slice VAE [66.63629641650572]
We propose a method to model 3D MR brain volumes distribution by combining a 2D slice VAE with a Gaussian model that captures the relationships between slices.
We also introduce a novel evaluation method for generated volumes that quantifies how well their segmentations match those of true brain anatomy.
arXiv Detail & Related papers (2020-07-09T13:23:15Z) - Brain Age Estimation Using LSTM on Children's Brain MRI [4.452516574196706]
We consider the 3D brain MRI volume as a sequence of 2D images and propose a new framework using the recurrent neural network for brain age estimation.
The proposed method is named as 2D-ResNet18+Long short-term memory (LSTM), which consists of four parts: 2D ResNet18 for feature extraction on 2D images, a pooling layer for feature reduction over the sequences, an LSTM layer, and a final regression layer.
arXiv Detail & Related papers (2020-02-20T22:27:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.