Local quantum channels giving rise to quasi-local Gibbs states
- URL: http://arxiv.org/abs/2408.08672v1
- Date: Fri, 16 Aug 2024 11:30:29 GMT
- Title: Local quantum channels giving rise to quasi-local Gibbs states
- Authors: Itai Arad, Raz Firanko, Omer Gurevich,
- Abstract summary: We study the steady-state properties of quantum channels with local Kraus operators.
A repeated application of these channels can be seen as a simple model for the thermalization process of a many-body system.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study the steady-state properties of quantum channels with local Kraus operators. We consider a large family that consists of general ergodic 1-local (non-interacting) terms and general 2-local (interacting) terms. Physically, a repeated application of these channels can be seen as a simple model for the thermalization process of a many-body system. We study its steady state perturbatively by interpolating between the 1-local and 2-local channels with a perturbation parameter $\epsilon$. We prove that under very general conditions, these states are Gibbs states of a quasi-local Hamiltonian. Expanding this Hamiltonian as a series in $\epsilon$, we show that the $k$'th order term corresponds to a $(k+1)$-local interaction term in the Hamiltonian, which follows the same interaction graph as the Kraus channel. We also prove a complementary result suggesting the existence of an interaction strength threshold, under which the total weight of the high-order terms in the Hamiltonian decays exponentially fast. This result also implies a quasi-polynomial classical algorithm for computing the expectation value of local observables in such steady states. Finally, we also present numerical simulations of various channels that support our theoretical claims.
Related papers
- Optimizing random local Hamiltonians by dissipation [44.99833362998488]
We prove that a simplified quantum Gibbs sampling algorithm achieves a $Omega(frac1k)$-fraction approximation of the optimum.
Our results suggest that finding low-energy states for sparsified (quasi)local spin and fermionic models is quantumly easy but classically nontrivial.
arXiv Detail & Related papers (2024-11-04T20:21:16Z) - Quasi-quantum states and the quasi-quantum PCP theorem [0.21485350418225244]
We show that solving the $k$-local Hamiltonian over the quasi-quantum states is equivalent to optimizing a distribution of assignment over a classical $k$-local CSP.
Our main result is a PCP theorem for the $k$-local Hamiltonian over the quasi-quantum states in the form of a hardness-of-approximation result.
arXiv Detail & Related papers (2024-10-17T13:43:18Z) - Nonlocality under Jaynes-Cummings evolution: beyond pseudospin operators [44.99833362998488]
We re-visit the generation and evolution of (Bell) nonlocality in hybrid scenarios whose dynamics is determined by the Jaynes-Cummings Hamiltonian.
Recent results on the optimal Bell violation in qubit-qudit systems show that the nonlocality is much greater than previously estimated.
arXiv Detail & Related papers (2024-10-14T16:01:23Z) - Strong decay of correlations for Gibbs states in any dimension [0.0]
Quantum systems in thermal equilibrium are described using Gibbs states.
We show that if the Gibbs state of a quantum system satisfies that each of its marginals admits a local effective Hamiltonian, then it satisfies a mixing condition.
arXiv Detail & Related papers (2024-01-18T17:20:29Z) - Guidable Local Hamiltonian Problems with Implications to Heuristic Ansätze State Preparation and the Quantum PCP Conjecture [0.0]
We study 'Merlinized' versions of the recently defined Guided Local Hamiltonian problem.
These problems do not have a guiding state provided as a part of the input, but merely come with the promise that one exists.
We show that guidable local Hamiltonian problems for both classes of guiding states are $mathsfQCMA$-complete in the inverse-polynomial precision setting.
arXiv Detail & Related papers (2023-02-22T19:00:00Z) - Asymptotic Equipartition Theorems in von Neumann algebras [24.1712628013996]
We show that the smooth max entropy of i.i.d. states on a von Neumann algebra has an rate given by the quantum relative entropy.
Our AEP not only applies to states, but also to quantum channels with appropriate restrictions.
arXiv Detail & Related papers (2022-12-30T13:42:35Z) - Concentration bounds for quantum states and limitations on the QAOA from
polynomial approximations [17.209060627291315]
We prove concentration for the following classes of quantum states: (i) output states of shallow quantum circuits, answering an open question from [DPMRF22]; (ii) injective matrix product states, answering an open question from [DPMRF22]; (iii) output states of dense Hamiltonian evolution, i.e. states of the form $eiota H(p) cdots eiota H(1) |psirangle for any $n$-qubit product state $|psirangle$, where each $H(
arXiv Detail & Related papers (2022-09-06T18:00:02Z) - Does causal dynamics imply local interactions? [0.0]
We consider quantum systems with causal dynamics in discrete spacetimes, also known as quantum cellular automata (QCA)
We ask if any of the Hamiltonians generating a QCA unitary is local in some sense, and we obtain two very different answers.
arXiv Detail & Related papers (2020-06-18T17:40:42Z) - From communication complexity to an entanglement spread area law in the
ground state of gapped local Hamiltonians [16.951941479979716]
We make a connection between two seemingly different problems.
The first problem involves characterizing the properties of entanglement in the ground state of gapped local Hamiltonians.
The second problem is on the quantum communication complexity of testing bipartite states with EPR assistance.
arXiv Detail & Related papers (2020-04-30T17:54:22Z) - Theory of Ergodic Quantum Processes [0.0]
We consider general ergodic sequences of quantum channels with arbitrary correlations and non-negligible decoherence.
We compute the entanglement spectrum across any cut, by which the bipartite entanglement entropy can be computed exactly.
Other physical implications of our results are that most Floquet phases of matter are metastable and that noisy random circuits in the large depth limit will be trivial as far as their quantum entanglement is concerned.
arXiv Detail & Related papers (2020-04-29T18:00:03Z) - Anisotropy-mediated reentrant localization [62.997667081978825]
We consider a 2d dipolar system, $d=2$, with the generalized dipole-dipole interaction $sim r-a$, and the power $a$ controlled experimentally in trapped-ion or Rydberg-atom systems.
We show that the spatially homogeneous tilt $beta$ of the dipoles giving rise to the anisotropic dipole exchange leads to the non-trivial reentrant localization beyond the locator expansion.
arXiv Detail & Related papers (2020-01-31T19:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.