論文の概要: Beam Prediction based on Large Language Models
- arxiv url: http://arxiv.org/abs/2408.08707v1
- Date: Fri, 16 Aug 2024 12:40:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-19 15:35:21.402224
- Title: Beam Prediction based on Large Language Models
- Title(参考訳): 大規模言語モデルに基づくビーム予測
- Authors: Yucheng Sheng, Kai Huang, Le Liang, Peng Liu, Shi Jin, Geoffrey Ye Li,
- Abstract要約: ミリ波(mmWave)通信は次世代無線ネットワークに期待できるが、パス損失は大きい。
長短期記憶(LSTM)のような従来のディープラーニングモデルでは、ビーム追跡精度が向上するが、ロバスト性や一般化が不足している。
本稿では,大規模言語モデル(LLM)を用いて,ビーム予測の堅牢性を向上させる。
- 参考スコア(独自算出の注目度): 51.45077318268427
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Millimeter-wave (mmWave) communication is promising for next-generation wireless networks but suffers from significant path loss, requiring extensive antenna arrays and frequent beam training. Traditional deep learning models, such as long short-term memory (LSTM), enhance beam tracking accuracy however are limited by poor robustness and generalization. In this letter, we use large language models (LLMs) to improve the robustness of beam prediction. By converting time series data into text-based representations and employing the Prompt-as-Prefix (PaP) technique for contextual enrichment, our approach unleashes the strength of LLMs for time series forecasting. Simulation results demonstrate that our LLM-based method offers superior robustness and generalization compared to LSTM-based models, showcasing the potential of LLMs in wireless communications.
- Abstract(参考訳): ミリ波通信は次世代無線ネットワークに期待できるが、大きな経路損失を被り、広範囲のアンテナアレイと頻繁なビーム訓練を必要とする。
長短期記憶(LSTM)のような従来のディープラーニングモデルでは、ビーム追跡精度が向上するが、ロバスト性や一般化が不足している。
本稿では,大規模言語モデル(LLM)を用いて,ビーム予測の堅牢性を向上させる。
時系列データをテキストベース表現に変換し,文脈豊か化のためのPrompt-as-Prefix(PaP)技術を用いることで,時系列予測のためのLLMの強度を解放する。
シミュレーションの結果,LSTMモデルに比べ,LLM法はロバスト性および一般化性に優れ,無線通信におけるLLMの可能性を示している。
関連論文リスト
- LinFormer: A Linear-based Lightweight Transformer Architecture For Time-Aware MIMO Channel Prediction [39.12741712294741]
第6世代(6G)モバイルネットワークは、ハイモビリティ通信をサポートする上で、新たな課題をもたらす。
本稿では,スケーラブルで全線形なエンコーダのみのトランスフォーマーモデルに基づく,革新的なチャネル予測フレームワークLinFormerを提案する。
提案手法は,高い予測精度を維持しつつ,計算複雑性を大幅に低減し,コスト効率のよい基地局(BS)の展開に適している。
論文 参考訳(メタデータ) (2024-10-28T13:04:23Z) - LLM-TS Integrator: Integrating LLM for Enhanced Time Series Modeling [5.853711797849859]
天気予報や異常検出などの動的システムでは時系列モデリングが不可欠である。
近年,大規模言語モデル(LLM)をTSモデリングに利用し,その強力なパターン認識機能を活用している。
論文 参考訳(メタデータ) (2024-10-21T20:29:46Z) - Csi-LLM: A Novel Downlink Channel Prediction Method Aligned with LLM Pre-Training [3.2721332912474668]
大規模言語モデル(LLM)は、複雑な配列に対して強力なパターン認識と推論能力を示す。
可変ステップ履歴列をモデル化するLLMを用いたダウンリンクチャネル予測技術であるCsi-LLMを紹介する。
そこで我々は,Csi-LLMの設計と訓練を自然言語タスクの処理と整合させる。
論文 参考訳(メタデータ) (2024-08-15T11:39:23Z) - R-SFLLM: Jamming Resilient Framework for Split Federated Learning with Large Language Models [83.77114091471822]
Split Federated Learning (SFL)は、分散機械学習(ML)における計算効率のパラダイムである。
SFLの課題は、特に無線チャネル上に展開する場合、送信されたモデルパラメータが相手のジャミングに感受性を持つことである。
これは、言語理解に不可欠である大規模言語モデル(LLM)における単語埋め込みパラメータに対して特に顕著である。
無線ネットワーク上でのLLM(R-SFLLM)を用いたレジリエンスSFLのための物理層フレームワークを開発した。
論文 参考訳(メタデータ) (2024-07-16T12:21:29Z) - WDMoE: Wireless Distributed Large Language Models with Mixture of Experts [65.57581050707738]
我々は,Mixture of Experts (MoE)に基づく無線分散大言語モデル(LLM)パラダイムを提案する。
我々は,基地局(BS)とモバイルデバイスにゲーティングネットワークと先行するニューラルネットワーク層を配置することにより,LLM内のMoE層を分解する。
我々は、モデルの性能とエンドツーエンドのレイテンシの両方を考慮して、専門家の選択ポリシーを設計する。
論文 参考訳(メタデータ) (2024-05-06T02:55:50Z) - Time-LLM: Time Series Forecasting by Reprogramming Large Language Models [110.20279343734548]
時系列予測は多くの実世界の力学系において重要な意味を持つ。
時系列予測のための大規模言語モデルを再利用するための再プログラミングフレームワークであるTime-LLMを提案する。
Time-LLMは、最先端の特殊な予測モデルよりも優れた、強力な時系列学習者である。
論文 参考訳(メタデータ) (2023-10-03T01:31:25Z) - Simultaneous Machine Translation with Large Language Models [51.470478122113356]
我々は,SimulMTタスクに大規模言語モデルを適用する可能性を検討する。
MUST-Cデータセットと異なる9言語でtextttLlama2-7b-chatモデルを用いて実験を行った。
その結果,LLM は BLEU と LAAL の指標で専用MT モデルよりも優れていた。
論文 参考訳(メタデータ) (2023-09-13T04:06:47Z) - Time-to-Green predictions for fully-actuated signal control systems with
supervised learning [56.66331540599836]
本稿では,集約信号とループ検出データを用いた時系列予測フレームワークを提案する。
我々は、最先端の機械学習モデルを用いて、将来の信号位相の持続時間を予測する。
スイスのチューリッヒの信号制御システムから得られた経験的データに基づいて、機械学習モデルが従来の予測手法より優れていることを示す。
論文 参考訳(メタデータ) (2022-08-24T07:50:43Z) - Interpretable AI-based Large-scale 3D Pathloss Prediction Model for
enabling Emerging Self-Driving Networks [3.710841042000923]
本稿では,新しい鍵予測器を応用した機械学習モデルを提案する。
予測,一般化,計算性能の観点から各種MLアルゴリズムの性能を定量的に評価することにより,光グラディエントブースティングマシン(LightGBM)アルゴリズムが全体として他のアルゴリズムより優れていることを示す。
論文 参考訳(メタデータ) (2022-01-30T19:50:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。